- Трудности теории Бора. Квантово-волновой дуализм

Презентация "Трудности теории Бора. Квантово-волновой дуализм" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "Трудности теории Бора. Квантово-волновой дуализм" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

Трудности теории Бора. Квантово-волновой дуализм. © В.Е. Фрадкин, 2004 © В.А. Зверев, 2004. Из коллекции www.eduspb.com
Слайд 1

Трудности теории Бора. Квантово-волновой дуализм.

© В.Е. Фрадкин, 2004 © В.А. Зверев, 2004

Из коллекции www.eduspb.com

Трудности теории Бора. В теории Бора сохранились представления об орбитальном движении электронов в кулоновском поле ядра. Классическая ядерная модель атома Резерфорда была дополнена в теории Бора идеей о квантовании электронных орбит. Поэтому теорию Бора иногда называют полуклассической.
Слайд 2

Трудности теории Бора

В теории Бора сохранились представления об орбитальном движении электронов в кулоновском поле ядра. Классическая ядерная модель атома Резерфорда была дополнена в теории Бора идеей о квантовании электронных орбит. Поэтому теорию Бора иногда называют полуклассической.

Трудности теории Бора. Квантово-волновой дуализм Слайд: 3
Слайд 3
Луи-де- Бройль
Слайд 4

Луи-де- Бройль

Электрон Фотон
Слайд 5

Электрон Фотон

В стационарном квантовом состоянии атома водорода на длине орбиты должно укладываться по идее де Бройля целое число длин волн λ, т. е. nλn = 2πrn. Подставляя длину волны де Бройля λ = h/p, где p = meυ – импульс электрона, получим: Объяснение правила квантования
Слайд 6

В стационарном квантовом состоянии атома водорода на длине орбиты должно укладываться по идее де Бройля целое число длин волн λ, т. е. nλn = 2πrn. Подставляя длину волны де Бройля λ = h/p, где p = meυ – импульс электрона, получим:

Объяснение правила квантования

Иллюстрация идеи де Бройля о возникновении стоячих волн на стационарной орбите для случая n = 4.
Слайд 7

Иллюстрация идеи де Бройля о возникновении стоячих волн на стационарной орбите для случая n = 4.

Квантование электронных орбит
Слайд 8

Квантование электронных орбит

Экспериментальное подтверждение гипотезы де Бройля. 1927 г. - американские физики К. Девиссон и Л. Джермер: пучок электронов, рассеивающийся на кристалле никеля, дает отчетливую дифракционную картину, подобную той, которая возникает при рассеянии на кристалле коротковолнового рентгеновского излучени
Слайд 9

Экспериментальное подтверждение гипотезы де Бройля.

1927 г. - американские физики К. Девиссон и Л. Джермер: пучок электронов, рассеивающийся на кристалле никеля, дает отчетливую дифракционную картину, подобную той, которая возникает при рассеянии на кристалле коротковолнового рентгеновского излучения. В этих экспериментах кристалл играл роль естественной дифракционной решетки.

1928 г. английский физик Дж. П. Томсон: наблюдение дифракционной картины, возникающей при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота.

Дифракция электронов. Картина дифракции электронов на поликристаллическом образце при длительной экспозиции (a) и при короткой экспозиции (b). В случае (b) видны точки попадания отдельных электронов на фотопластинку.
Слайд 10

Дифракция электронов

Картина дифракции электронов на поликристаллическом образце при длительной экспозиции (a) и при короткой экспозиции (b). В случае (b) видны точки попадания отдельных электронов на фотопластинку.

Опыты Фабриканта, Бибермана, Сушкина. Опыт Дж. Томсона был многократно повторен с неизменным результатом, в том числе при условиях, когда поток электронов был настолько слабым, что через прибор единовременно могла проходить только одна частица (В. А. Фабрикант, 1948 г.). Таким образом, было эксперим
Слайд 11

Опыты Фабриканта, Бибермана, Сушкина

Опыт Дж. Томсона был многократно повторен с неизменным результатом, в том числе при условиях, когда поток электронов был настолько слабым, что через прибор единовременно могла проходить только одна частица (В. А. Фабрикант, 1948 г.). Таким образом, было экспериментально доказано, что волновые свойства присущи не только большой совокупности электронов, но и каждому электрону в отдельности.

Волновые свойства макроскопических тел. Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что это универсальное явление природы, общее свойство
Слайд 12

Волновые свойства макроскопических тел.

Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что это универсальное явление природы, общее свойство материи. Следовательно, волновые свойства должны быть присущи и макроскопическим телам. Однако вследствие большой массы макроскопических тел их волновые свойства не могут быть обнаружены экспериментально. Например, пылинке массой 10–9 г, движущийся со скоростью 0,5 м/с соответствует волна де Бройля с длиной волны порядка 10–21 м, т. е. приблизительно на 11 порядков меньше размеров атомов. Такая длина волны лежит за пределами доступной наблюдению области.

Квантовая механика. Гипотеза де Бройля основывалась на соображениях симметрии свойств материи и не имела в то время опытного подтверждения. Но она явилась мощным революционным толчком к развитию новых представлений о природе материальных объектов. В течение нескольких лет целый ряд выдающихся физико
Слайд 13

Квантовая механика

Гипотеза де Бройля основывалась на соображениях симметрии свойств материи и не имела в то время опытного подтверждения. Но она явилась мощным революционным толчком к развитию новых представлений о природе материальных объектов. В течение нескольких лет целый ряд выдающихся физиков XX века – В. Гейзенберг, Э. Шредингер, П. Дирак, Н. Бор, М. Борн и другие – разработали теоретические основы новой науки, которая была названа квантовой механикой.

Нильс Бор. Принцип дополнительности Интерпретация квантовой механики
Слайд 14

Нильс Бор

Принцип дополнительности Интерпретация квантовой механики

Принцип дополнительности Н.Бора. Всем микрообъектам присущи и волновые, и корпускулярные свойства, однако, они не являются ни волной, ни частицей в классическом понимании. Разные свойства микрообъектов не проявляются одновременно, они дополняют друг друга, только их совокупность характеризует микроо
Слайд 15

Принцип дополнительности Н.Бора

Всем микрообъектам присущи и волновые, и корпускулярные свойства, однако, они не являются ни волной, ни частицей в классическом понимании. Разные свойства микрообъектов не проявляются одновременно, они дополняют друг друга, только их совокупность характеризует микрообъект полностью. Можно условно сказать, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.

Вернер Гейзенберг. Матричная механика Соотношение неопределенностей
Слайд 16

Вернер Гейзенберг

Матричная механика Соотношение неопределенностей

Соотношение неопределенностей В.Гейзенберга. Микрочастицы в принципе не имеют одновременно точного значения координаты и соответствующей проекции импульса. Является проявлением двойственной корпускулярно-волновой природы материальных микрообъектов. Позволяет оценить, в какой мере можно применять к м
Слайд 17

Соотношение неопределенностей В.Гейзенберга

Микрочастицы в принципе не имеют одновременно точного значения координаты и соответствующей проекции импульса.

Является проявлением двойственной корпускулярно-волновой природы материальных микрообъектов. Позволяет оценить, в какой мере можно применять к микрочастицам понятия классической механики. Показывает, в частности, что к микрообъектам неприменимо классическое понятие траектории, так как движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости.

Эрвин Шредингер. Волновая механика Волновое уравнение электрона – уравнение Шредингера
Слайд 18

Эрвин Шредингер

Волновая механика Волновое уравнение электрона – уравнение Шредингера

Распределение вероятности обнаружения электрона в атоме водорода. В обоих случаях атом водорода можно представить в виде сферически симметричного электронного облака, в центре которого находится ядро. Электрон в состоянии 1s (основное состояние атома водорода) может быть обнаружен на различных расст
Слайд 19

Распределение вероятности обнаружения электрона в атоме водорода

В обоих случаях атом водорода можно представить в виде сферически симметричного электронного облака, в центре которого находится ядро.

Электрон в состоянии 1s (основное состояние атома водорода) может быть обнаружен на различных расстояниях от ядра. С наибольшей вероятностью его можно обнаружить на расстоянии, равном радиусу r1 первой боровской орбиты.

Вероятность обнаружения электрона в состоянии 2s максимальна на расстоянии r = 4r1 от ядра.

Макс Борн. Статистическая интерпретация волнового уравнения Доказательство идентичности волновой и матричной механики
Слайд 20

Макс Борн

Статистическая интерпретация волнового уравнения Доказательство идентичности волновой и матричной механики

Модель. Атом водорода.
Слайд 21

Модель. Атом водорода.

Доказательство связи квантовой и классической механики (наличие предельного перехода). Пауль Эренфест
Слайд 22

Доказательство связи квантовой и классической механики (наличие предельного перехода)

Пауль Эренфест

Поль Дирак. Релятивистская квантовая механика (уравнение Дирака)
Слайд 23

Поль Дирак

Релятивистская квантовая механика (уравнение Дирака)

Список похожих презентаций

Принцип относительности в механике. Постулаты теории относительности

Принцип относительности в механике. Постулаты теории относительности

Г. Галилей ввел в классическую механику принцип относительности, смысл которого следующий: законы механики имеют один и тот же вид во всех инерциальных ...
Квантовые Постулаты Бора

Квантовые Постулаты Бора

развитие естественно-научного миропонимания о строении вещества; изучить механизм излучения и поглощения света атомами на основе теории строения атома ...
Постулаты специальной теории относительности

Постулаты специальной теории относительности

Принцип относительности Галилея. Закон сложения скоростей. При изложении механики предполагалось, что механические явления происходят одинаково в ...
Элементы теории относительности

Элементы теории относительности

Содержание. Законы электродинамики и принцип относительности. Постулаты теории относительности и основные следствия, вытекающие из постулатов теории ...
Элементы теории относительности

Элементы теории относительности

Принцип относительности в механике и электродинамике. Распространяется ли принцип относительности, справедливый для механических явлений, и на электромагнитные ...
Суть постулатов Бора

Суть постулатов Бора

Для решения этой задачи Бор, сохраняя классический подход к описанию поведения электрона в атоме, выдвинул три постулата, которые называются постулатами ...
Что такое свет? Корпускулярно-волновой дуализм

Что такое свет? Корпускулярно-волновой дуализм

Мастер-класс по теме:. «Что такое свет? Корпускулярно-волновой дуализм». «Что такое свет?». 1) Свет – поток частиц. 2) сВет - волна. Если при движении, ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

Тема урока. Микропараметры вещества. 1. Молекулярная физика. 1.1. Основы МКТ План урока. 2. Размеры молекул. 3. Число молекул. 4. Масса молекулы. ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

Цели урока:. Образовательные: сформулировать основные положения МКТ; раскрыть научное и мировоззренческое значение броуновского движения; установить ...
Описание дефектов кристаллической структуры в рамках теории упругости

Описание дефектов кристаллической структуры в рамках теории упругости

В настоящем разделе рассматриваются задачи, в которых концентрацию дефектов считается малой, то есть можно предполагать, что дефекты образуют в матрице ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

МКТ молекулярно-кинетическая теория. объясняет физические явления и свойства тел с точки зрения их внутреннего микроскопического строения. На уроках ...
Новые преобразования для теории относительности

Новые преобразования для теории относительности

Цель преобразований:. Введение единых эталонов времени и протяженности для инерциальных систем отсчета (ИСО) S и S', двигающихся друг относительно ...
Корпускулярно-волновой дуализм Луи де Бройля

Корпускулярно-волновой дуализм Луи де Бройля

Гейзенберг родился в тот год, когда была напечатана знаменитая работа Планка. Когда он заканчивал гимназию, его родина Германия воевала со всем миром: ...
Корпускулярно-волновой дуализм

Корпускулярно-волновой дуализм

Цель: повторение основных понятий, законов и формул КОРПУСКУЛЯРНО-ВОЛНОВОГО ДУАЛИЗМ А в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые ...
Принципы общей теории относительности

Принципы общей теории относительности

Общая теория относительности (ОТО) — физическая теория пространства-времени и тяготения, основана на экспериментальном принципе эквивалентности гравитационной ...
Основные положения молекулярно-кинетической теории (МКТ). Абсолютная температура.

Основные положения молекулярно-кинетической теории (МКТ). Абсолютная температура.

Молекулярная физика. Раздел, в котором изучают свойства макроскопических тел в различных агрегатных состояниях на основе МКТ. Демокрит (около 460 ...
Развитие теории атомизма

Развитие теории атомизма

«Выслушай то, что скажу, и ты сам, несомненно, признаешь, Что существуют тела, которых мы видеть не можем……..». КАР ЛУКРЕЦИЙ. ДЕМОКРИТ. Путем размышлений ...
Основы молекулярно-кинетической теории

Основы молекулярно-кинетической теории

Молекулярно-Кинетическая Теория Представляет собой: Учение, объясняющее тепловые явления в зависимости от внутреннего строения вещества. Молекулярно-кинетической ...
Теория атома Бора

Теория атома Бора

Недостатки модели Резерфорда:. § 8.2. Линейчатый спектр атома водорода. ультрафиолетовая область : серия Лаймана m=1 n=2,3,4,5, видимая область спектра ...
Основы молекулярно-кинетической теории

Основы молекулярно-кинетической теории

1. Как изменится давление идеального газа при увеличении концентрации его молекул в 3 раза, если средняя квадратичная скорость молекул останется неизменной? ...

Конспекты

Принцип относительности в механике. Постулаты теории относительности

Принцип относительности в механике. Постулаты теории относительности

Цуканова Наталья Рефатовна. Преподаватель физики, вторая категория. КГУ «Машиностроительный колледж города Петропавловска». Казахстан ,СКО,г.Петропавловск. ...
Экспериментальные доказательства молекулярно – кинетической теории

Экспериментальные доказательства молекулярно – кинетической теории

Урок физики в 10 классе. «Экспериментальные доказательства молекулярно – кинетической теории». Подготовила:. Врясова ...
Основы молекулярно – кинетической теории

Основы молекулярно – кинетической теории

Цикл уроков физики в 10 классе. Тема: Основы молекулярно – кинетической теории (5 часов). В процессе работы над модулем вы должны изучить. :. ...
Постулаты Н. Бора

Постулаты Н. Бора

Муниципальное общеобразовательное учреждение. «Средняя общеобразовательная школа№41». г. Саратов. Конспект урока по физикев 11 классе. ...
Основные положения молекулярно-кинетической теории и ее опытное подтверждение.Масса и размеры молекул

Основные положения молекулярно-кинетической теории и ее опытное подтверждение.Масса и размеры молекул

Бегимбаева Жумагуль Купжасаровна. Учитель физики сш №5. Актюбинская область. . Города Шалкар. Тема урока:. "Основные положения ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

Обобщающий урок по теме «Основные положения молекулярно-кинетической теории». Цель урока. : обобщение знаний по основным положениям МКТ. Задачи ...
Основные положения молекулярно – кинетической теории

Основные положения молекулярно – кинетической теории

Тема: Основные положения молекулярно – кинетической теории. Цель урока. : 1.Учащиеся смогут описывать тепловые явления с помощью статического метода, ...
Квантово - волновой дуализм или волновые и квантовые свойства света и вещества

Квантово - волновой дуализм или волновые и квантовые свойства света и вещества

Урок – семинар. Орлова Н.Г. – учитель физики МБОУ «Тучковская СОШ №3». Тема урока:. « Квантово - волновой дуализм или волновые и квантовые свойства ...
Задачи и вопросы по теории относительности

Задачи и вопросы по теории относительности

Задачи и вопросы по теории относительности. В небольшой, но содержательной теме по элементам специальной теории относительности у учителя нет возможностей ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.