- Самоорганизация в живой и неживой природе

Презентация "Самоорганизация в живой и неживой природе" (9 класс) по биологии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35

Презентацию на тему "Самоорганизация в живой и неживой природе" (9 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Биология. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 35 слайд(ов).

Слайды презентации

Самоорганизация в живой и неживой природе. Кибернетика. Синергетика.
Слайд 1

Самоорганизация в живой и неживой природе. Кибернетика. Синергетика.

Структурные уровни организации материи. Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами. Закономерности новых уровней специфичны, несводимы к закономерностям уровней, на базе
Слайд 2

Структурные уровни организации материи.

Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами. Закономерности новых уровней специфичны, несводимы к закономерностям уровней, на базе которых они возникли. Структурное многообразие, то есть системность является способом существования материи.

Неорганическая природа : микроэлементарный (уровень элементарных частиц и полевых взаимодействий) ядерный атомарный молекулярный уровень макроскопических тел различной величины планеты звездно-планетные комплексы галактики метагалактики
Слайд 3

Неорганическая природа : микроэлементарный (уровень элементарных частиц и полевых взаимодействий) ядерный атомарный молекулярный уровень макроскопических тел различной величины планеты звездно-планетные комплексы галактики метагалактики

Структурные уровни организации материи. Живая природа: уровень биологических макромолекул клеточный уровень микроорганизменный органов и тканей организм популяционный биоценозный биосферный.
Слайд 4

Структурные уровни организации материи

Живая природа: уровень биологических макромолекул клеточный уровень микроорганизменный органов и тканей организм популяционный биоценозный биосферный.

Система и элемент. Целое и часть. Система - комплекс взаимодействующих элементов. Элемент - далее неразложимый компонент системы при данном способе ее рассмотрения называется. Для анализа сложноорганизованных, саморазвивающихся систем, когда между элементами и системой имеются "промежуточные ко
Слайд 5

Система и элемент. Целое и часть.

Система - комплекс взаимодействующих элементов. Элемент - далее неразложимый компонент системы при данном способе ее рассмотрения называется. Для анализа сложноорганизованных, саморазвивающихся систем, когда между элементами и системой имеются "промежуточные комплексы" более сложные, чем элементы, но менее сложные, чем система, используют понятие "подсистема".

Основные законы классической (равновесной термодинамики). Термодинамическая система – это система, состоящая из большого числа частиц, взаимодействующих между собой. Термодинамические системы могут быть: а) изолированными (замкнутыми) – это те системы, которые не сообщаются с окружающей средой ни ра
Слайд 6

Основные законы классической (равновесной термодинамики). Термодинамическая система – это система, состоящая из большого числа частиц, взаимодействующих между собой. Термодинамические системы могут быть: а) изолированными (замкнутыми) – это те системы, которые не сообщаются с окружающей средой ни работой, ни теплом, ни веществом, ни информацией. Другое название – равновесные. Б) открытыми – сообщающиеся с окружающей средой. Открытые системы не изучаются классической термодинамикой.

Термодинамические законы. Классическая термодинамика описывается д двумя законами: 1. Закон сохранения и превращения энергии - первое начало термодинамики. Q=ΔU+A, где ΔU – изменение внутренней энергии, А – работа. Количество теплоты, сообщенное телу, идет на увеличение его внутренней энергии и сове
Слайд 7

Термодинамические законы. Классическая термодинамика описывается д двумя законами: 1. Закон сохранения и превращения энергии - первое начало термодинамики. Q=ΔU+A, где ΔU – изменение внутренней энергии, А – работа. Количество теплоты, сообщенное телу, идет на увеличение его внутренней энергии и совершение телом работы.

Сущность второго начала термодинамики - невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при постоянной температуре. Иногда этот закон выражают в еще более простой форме: Тепло не может перетечь самопроизвольно от холодного тела к более горячему.
Слайд 8

Сущность второго начала термодинамики - невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при постоянной температуре. Иногда этот закон выражают в еще более простой форме: Тепло не может перетечь самопроизвольно от холодного тела к более горячему.

Рудольф Клаузиус использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии Людвиг Больцман интерпретировал в термине изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок в системе. В таком случае второй закон
Слайд 9

Рудольф Клаузиус использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии Людвиг Больцман интерпретировал в термине изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок в системе. В таком случае второй закон термодинамики постулирует (закон возрастания энтропии): Энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением ни энергией ни веществом, постоянно возрастает.

Энтропия – это количественная мера хаоса в системе, ме мера неупорядоченности. Общий итог достаточно печален: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех видов энергии в тепловую, которая в среднем равномерно распре
Слайд 10

Энтропия – это количественная мера хаоса в системе, ме мера неупорядоченности. Общий итог достаточно печален: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех видов энергии в тепловую, которая в среднем равномерно распределится между всеми элементами системы, что и будет означать термодинамическое равновесие, или полный хаос. Если наша Вселенная замкнута, то ее ждет именно такая незавидная участь. Из хаоса, как утверждали древние греки, она родилась, в хаос же, как предполагает классическая термодинамика, и возвратится.

Равновесные и неравновесные состояния системы. Неравновесное состояние Система меняет свою структуру, реагируя на внешние условия. Приток энергии создает в системе упорядоченность; энтропия уменьшается. Неравновесностъ - причина порядка системы; ее элементы ведут себя коррелировано. Множество дискре
Слайд 11

Равновесные и неравновесные состояния системы

Неравновесное состояние Система меняет свою структуру, реагируя на внешние условия. Приток энергии создает в системе упорядоченность; энтропия уменьшается. Неравновесностъ - причина порядка системы; ее элементы ведут себя коррелировано. Множество дискретных устойчивых состояний системы. Чувствительность к флуктуациям. Наличие бифуркации (критическое состояние, переломная точка в развитии системы). Неопределенность поведения системы.

Равновесное состояние Система меняет свою структуру только при наличии сильных возмущений. Элементы системы пребывают в хаотическом движении. Энтропия возрастает. Одно дискретное устойчивое состояние системы. Нечувствительность к флуктуациям. Поведение системы характеризуется линейными зависимостями.

Концепции эволюции реальных систем. Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.
Слайд 12

Концепции эволюции реальных систем.

Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.

Самоорганизация в живой и неживой природе. Кибернетика. Кибернетика – от греческого искусство управления. В основе кибернетики лежит идея возможности использовать общий подход к рассмотрению процессов управления в системах различной природы. Рождение кибернетики принято связывать с именем Норберта В
Слайд 13

Самоорганизация в живой и неживой природе. Кибернетика.

Кибернетика – от греческого искусство управления. В основе кибернетики лежит идея возможности использовать общий подход к рассмотрению процессов управления в системах различной природы. Рождение кибернетики принято связывать с именем Норберта Винера (1948 год книга «Кибернетика, или управление и связь в животном и машине»).

Классическое представление о мире, состоящем из материи и энергии, уступило место представлению о мире, состоящем из трех составляющих: энергии, материи и информации. Информация – от лат. Ознакомление Разъяснение - обозначает меру организованности системы в противоположность понятию «энтропия» как м
Слайд 14

Классическое представление о мире, состоящем из материи и энергии, уступило место представлению о мире, состоящем из трех составляющих: энергии, материи и информации. Информация – от лат. Ознакомление Разъяснение - обозначает меру организованности системы в противоположность понятию «энтропия» как меры неорганизованности.

Кибернетика как наука об управлении имеет, очевидно, объектом своего изучения управляющие системы. Для того чтобы в системе могли протекать процессы управления она должна обладать определенной степенью сложности и быть динамичной (изменяться). К сложным динамическим системам относятся и живые органи
Слайд 15

Кибернетика как наука об управлении имеет, очевидно, объектом своего изучения управляющие системы. Для того чтобы в системе могли протекать процессы управления она должна обладать определенной степенью сложности и быть динамичной (изменяться). К сложным динамическим системам относятся и живые организмы (животные и растения), и социально-экономические комплексы (организованные группы людей, бригады, предприятия, государства, отрасли промышленности), и технические агрегаты (поточные линии, транспортные средства).

К основным задачам кибернетики относятся: & установление фактов, общих для всех управляемых систем или по крайней мере для некоторых их совокупностей; & выявление ограничений, свойственных управляемым системам, и установление их происхождения; нахождение общих законов, которым подчиняются уп
Слайд 16

К основным задачам кибернетики относятся: & установление фактов, общих для всех управляемых систем или по крайней мере для некоторых их совокупностей; & выявление ограничений, свойственных управляемым системам, и установление их происхождения; нахождение общих законов, которым подчиняются управляемые системы; определение путей практического использования установленных фактов и найденных закономерностей

Теоретическая кибернетика – разработка научного аппарата и методов исследования систем управления независимо от их конкретной природы (теория информации и теория алгоритмов, теория игр, исследование операций и т.д.) Прикладная кибернетика подразделяется на Техническую кибернетику – управление технич
Слайд 17

Теоретическая кибернетика – разработка научного аппарата и методов исследования систем управления независимо от их конкретной природы (теория информации и теория алгоритмов, теория игр, исследование операций и т.д.) Прикладная кибернетика подразделяется на Техническую кибернетику – управление техническими системами. Биологическую кибернетику - общие законы хранения, передачи и переработки информации в биологических системах. Она подразделяется на медицинскую кибернетику (моделирование заболеваний, использование этих моделей для диагностики, прогнозирования и лечения); физиологическую кибернетику (изучает и моделирует функции клеток и органов в норме и патологии); нейрокибернетику (моделирует процессы переработки информации в нервной системе); психологическую кибернетику (моделирует психику на основе изучения поведения животных).

Бионика – промежуточное звено между биологической и технической кибернетикой- использование моделей биологических процессов и механизмов в качестве прототипов для совершенствования существующих и создания новых технических устройств. Социальная кибернетика – наука, в которой используются методы и ср
Слайд 18

Бионика – промежуточное звено между биологической и технической кибернетикой- использование моделей биологических процессов и механизмов в качестве прототипов для совершенствования существующих и создания новых технических устройств. Социальная кибернетика – наука, в которой используются методы и средства кибернетики в целях исследования и организации процессов управления в социальных системах.

В кибернетике отвлекаются от конкретных особенностей изучаемых систем, выделяют закономерности, общие для некоторого множества систем, и вводят понятие абстрактной кибернетической системы.
Слайд 19

В кибернетике отвлекаются от конкретных особенностей изучаемых систем, выделяют закономерности, общие для некоторого множества систем, и вводят понятие абстрактной кибернетической системы.

Управление – это воздействие на объект, выбранное на основании имеющейся для этого информации из множества возможных воздействий, улучшающее его функционирование или развитие.
Слайд 20

Управление – это воздействие на объект, выбранное на основании имеющейся для этого информации из множества возможных воздействий, улучшающее его функционирование или развитие.

Самоорганизация в живой и неживой природе. Синергетика. «Синергетика»- в переводе с древнегреческого означает совместное, объединенное действие и подчеркивает кооперативный характер эффектов, связанных с самоорганизацией. Основоположниками синергетики считаются Г. Хакен И. Пригожин.
Слайд 21

Самоорганизация в живой и неживой природе. Синергетика.

«Синергетика»- в переводе с древнегреческого означает совместное, объединенное действие и подчеркивает кооперативный характер эффектов, связанных с самоорганизацией. Основоположниками синергетики считаются Г. Хакен И. Пригожин.

Фокусирует свое внимание на неравновесности, нестабильности как естественном состоянии открытых нелинейных систем, на множественности и неоднозначности путей их эволюции. В открытых системах ключевую роль – наряду с закономерным и необходимым – могут играть случайные факторы, флуктуационные процессы
Слайд 22

Фокусирует свое внимание на неравновесности, нестабильности как естественном состоянии открытых нелинейных систем, на множественности и неоднозначности путей их эволюции. В открытых системах ключевую роль – наряду с закономерным и необходимым – могут играть случайные факторы, флуктуационные процессы. Флуктуации - случайные отклонения физических величин от средних значений. Неравновесность порождает избирательность системы, ее необычные реакции на внешние воздействия среды. Неравновесные системы имеют способность воспринимать различия во внешней среде и "учитывать" их в своем функционировании.

СИНЕРГЕТИКА:

Открытые неравновесные системы, активно взаимодействующие с внешней средой, могут приобретать особое динамическое состояние – диссипативность. Диссипативность - качественно своеобразное макроскопическое проявление процессов, протекающих на микроуровне. Благодаря диссипативности в неравновесных систе
Слайд 23

Открытые неравновесные системы, активно взаимодействующие с внешней средой, могут приобретать особое динамическое состояние – диссипативность. Диссипативность - качественно своеобразное макроскопическое проявление процессов, протекающих на микроуровне. Благодаря диссипативности в неравновесных системах могут спонтанно возникать новые типы структур, возникать новые динамические состояния материи.

В развитии открытых и сильнонеравновесных систем наблюдаются 2 фазы: 1 фаза - период плавного эволюционного развития, заканчивающийся неустойчивым критическим состоянием. Под точкой бифуркации понимается состояние рассматриваемой системы, после которого возможно некоторое множество вариантов ее даль
Слайд 24

В развитии открытых и сильнонеравновесных систем наблюдаются 2 фазы: 1 фаза - период плавного эволюционного развития, заканчивающийся неустойчивым критическим состоянием. Под точкой бифуркации понимается состояние рассматриваемой системы, после которого возможно некоторое множество вариантов ее дальнейшего развития.

картина В.М. Васнецова «Витязь на распутье».

Аттрактор – это относительно устойчивое состояние системы, которое как бы притягивает к себе все множество траекторий развития, возможных после точки бифуркации. 2 фаза: выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упоряд
Слайд 25

Аттрактор – это относительно устойчивое состояние системы, которое как бы притягивает к себе все множество траекторий развития, возможных после точки бифуркации. 2 фаза: выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.

Новый порядок связан с появлением и накоплением флуктуаций в системе. В дальнейшем они нарастают и способ-ствуют появлению хаоса в системе. Флуктуации ведут к возрастанию энтропии. Новый порядок всегда восстанавливается через хаос. Флуктуации расшатывают систему, она становится неустойчивой, и любое
Слайд 26

Новый порядок связан с появлением и накоплением флуктуаций в системе. В дальнейшем они нарастают и способ-ствуют появлению хаоса в системе. Флуктуации ведут к возрастанию энтропии. Новый порядок всегда восстанавливается через хаос. Флуктуации расшатывают систему, она становится неустойчивой, и любое незначительное воздействие толкнет ее к саморазрушению, а дальше – к выбору пути. Любая революция есть выбор пути социальной системы. Система приходит к точке бифуркации (выбора), где существует несколько альтернатив дальнейшего развития.

Явление бифуркации
Слайд 27

Явление бифуркации

Примеры самоорганизации систем разной природы. химические часы (реакция Белоусова-Жаботинского); Конфигурации, возникающие при реакции Белоусова-Жаботинского в тонком слое в чашке Петри
Слайд 28

Примеры самоорганизации систем разной природы

химические часы (реакция Белоусова-Жаботинского); Конфигурации, возникающие при реакции Белоусова-Жаботинского в тонком слое в чашке Петри

Ячейки Бенара, возникающие в подогретом слое жидкости
Слайд 29

Ячейки Бенара, возникающие в подогретом слое жидкости

действие лазера,
Слайд 30

действие лазера,

рост кристаллов; формирование живого организма; образование форм растений и животных; динамика популяций; пространственно-временные структуры в электрической активности сердца и мозга; образование уличных пробок, развитие рыночной экономики, формирование культурных традиций и общественного мнения, д
Слайд 31

рост кристаллов; формирование живого организма; образование форм растений и животных; динамика популяций; пространственно-временные структуры в электрической активности сердца и мозга; образование уличных пробок, развитие рыночной экономики, формирование культурных традиций и общественного мнения, демографические процессы.

Динамика популяции жертв и хищника
Слайд 32

Динамика популяции жертв и хищника

Система должна быть открытой и иметь приток энергии и вещества извне Наличие флуктуации. Процесс возникновения и усиления порядка через флуктуации характеризуют как принцип самоорганизации Процесс самоорганизации системы возможен только при определенном, достаточном количестве взаимодействующих элем
Слайд 33

Система должна быть открытой и иметь приток энергии и вещества извне Наличие флуктуации. Процесс возникновения и усиления порядка через флуктуации характеризуют как принцип самоорганизации Процесс самоорганизации системы возможен только при определенном, достаточном количестве взаимодействующих элементов

Открытая система должна находиться вдали от точки термодинамического равновесия Самоорганизация основывается на положительной обратной связи, в отличие от динамического равновесия систем, которое опирается на отрицательную обратную связь Процесс самоорганизации предполагает нарушение симметрии

Некоторые условия самоорганизации

Возникновение синергетики означает начало новой научной революции, так как она меняет стратегию научного познания и ведет к выработке принципиально новой картины мира и новой интерпретации фундаментальных принципов естествознания. Синергетика обращается к процессам неупорядоченности в открытых систе
Слайд 34

Возникновение синергетики означает начало новой научной революции, так как она меняет стратегию научного познания и ведет к выработке принципиально новой картины мира и новой интерпретации фундаментальных принципов естествознания. Синергетика обращается к процессам неупорядоченности в открытых системах, неустойчивости, неравновесности.

Заслуга синергетики: открыла и исследовала самоорганизующиеся процессы в самой простейшей элементарной форме и тем самым способствовала раскрытию единства и взаимосвязи между неживой и живой природой. дает возможность изучать процессы усложнения и эволюции материи с точки зрения ее самоорганизации н
Слайд 35

Заслуга синергетики: открыла и исследовала самоорганизующиеся процессы в самой простейшей элементарной форме и тем самым способствовала раскрытию единства и взаимосвязи между неживой и живой природой. дает возможность изучать процессы усложнения и эволюции материи с точки зрения ее самоорганизации на разных уровнях ее развития. философско-мировоззренческое значение: ее выводы и результаты служат естественнонаучным подтверждением самодвижения и внутренней активности материи.

Список похожих презентаций

Весенние изменения в неживой природе

Весенние изменения в неживой природе

Дорогие ребята! Убедительно прошу помочь мне в поисках моей внучки. Первого марта она ушла из дома. Больше я её не видел. Примерное местонахождение ...
Биология – наука о живой природе

Биология – наука о живой природе

Выделите естественные тела живой природы:. А. Вода Е. Воздух Б. Животные Ж. Растения В. Бактерии З.Тепло Г. Горные породы И. Грибы Д.Почва. Б, В, ...
Биология - наука о живой природе

Биология - наука о живой природе

«Нет ничего более изобретательного, чем природа». «Нет, ничего более упорядоченного, чем природа». Марк Цицерон. План урока 1.    Правила работы в кабинете ...
Биология - наука о живой природе

Биология - наука о живой природе

Биология «биос» - жизнь «логос» - учение +. Биология - наука о жизни, о живых организмах, обитающих на Земле. Учёные насчитывают более 3,5 млн видов ...
Биология - наука о живой природе

Биология - наука о живой природе

Биология «биос» - жизнь, «логос» - наука. Биология – наука о жизни, о живых организмах, обитающих на нашей планете. 3,5 млн видов. Биосфера «биос» ...
Конкуренция в живой природе

Конкуренция в живой природе

В живой природе каждый живой организм живет не изолированно. Его окружает множество других представителей живой природы, и они постоянно взаимодействуют ...
Симметрия в живой природе

Симметрия в живой природе

Симметрия это красота и гармония в живой природе. Симметрия имеет множество типов один из них это двусторонняя симметрия:. Все животные и человек ...
Симметрия в живой природе

Симметрия в живой природе

ПАСПОРТ ПРОЕКТНОЙ РАБОТЫ. Цель проекта: изучить научно-популярную литературу и исследовать проявление симметрии в растительном и животном мире. Задачи ...
Человек в живой природе

Человек в живой природе

Какой же вклад внесли ученые различных исторических эпох в развитие представлений о происхождении человека? Выполните задание и соотнесите имя ученого ...
Единство живой и неживой природы

Единство живой и неживой природы

Природа – это книга, которую надо прочитать и правильно понять… Жан-Анри Фабр. ЦЕЛЬ УРОКА. Сформировать знания о единстве живой и неживой природы; ...
Науки о живой природе

Науки о живой природе

Многообразие живых организмов. На планете более 5 млн видов организмов, не менее 500 млн видов вымерло в предыдущие геологические эпохи. Живые организмы ...
Биология - наука о живой природе

Биология - наука о живой природе

Верхний ряд: Уран и Нептун; нижний ряд: Земля, белый карлик Сириус, Венера.  Марс и Меркурий; ниже: Луна, карликовыепланеты  Плутон и  Хауме. Архейская ...
Наука о живой природе

Наука о живой природе

С древних времен человек связан с окружающей его живой природой, во многом жизнь людей зависела от охоты и рыболовства. Мясо- источник питания Шкура, ...
Движение в живой природе

Движение в живой природе

Содержание. Движение животных Движение простейших и беспозвоночных Движение в водной среде Движение в наземно-воздушной среде. Для чего нужно движенье ...
Многообразие насекомых, роль в природе и на практике

Многообразие насекомых, роль в природе и на практике

Общая характеристика типа Членистоногие. Тело покрыто плотным хитиновым покровом, выполняющим функцию наружного скелета; Наличие членистых конечностей; ...
Многообразие насекомых, их роль в природе

Многообразие насекомых, их роль в природе

Проверить уровень сформированности общеучебных умений и навыков: умение сравнивать, сопоставлять, устанавливать причинно-следственные связи, использовать ...
Человек – часть живой природы

Человек – часть живой природы

Смотрю на глобус - шар земной, И вдруг вздохнул он, как живой; И шепчут мне материки: Ты береги нас, береги! В тревоге рощи и леса, Роса на травах, ...
Биотические связи в природе

Биотические связи в природе

Типы биотических связей 100. Какой тип биотических связей характерен для щук и окуней, живущих в одном озере? Типы биотических связей 100 (ответ). ...
Роль биосферы в природе

Роль биосферы в природе

Биологический круговорот. Биогенные вещества. Продуценты (растения). Консументы (растительноядные, хищные). Редуценты (бактерии, грибы). Круговорот ...
Памятники природе

Памятники природе

Задачи :. Развивать любознательность и познавательный интерес учащихся; Развивать творческую активность; Воспитывать любовь и бережное отношение к ...

Конспекты

Движение в живой природе

Движение в живой природе

МОУ ООШ с. Озерки Духовницкого района. Саратовской области. Конспект открытого урока биологии в 6 классе. «. Движение в живой природе. ...
Биология – наука о живой природе

Биология – наука о живой природе

. Урок № 1. Биология – наука о живой природе. Цель:. сформировать знания о биологии как науке, изучающей живые организмы. Задачи:. . Сформировать ...
Многообразие Кишечнополостных, их роль в природе и жизни человека

Многообразие Кишечнополостных, их роль в природе и жизни человека

. Конспект урока биологии для 7 классапо теме. . . «Многообразие Кишечнополостных,. . их роль в природе и жизни человека». Мокеева Светлана ...
Бактерии в природе и жизни человека

Бактерии в природе и жизни человека

Тема: Бактерии в природе и жизни человека. Цель урока: раскрыть перед учащимися значение бактерий. Задачи:1. Дать представление о многообразной ...
Царства живой природы

Царства живой природы

Конспект урока по теме: «Царства живой природы». Цель. : знакомство с царствами природы, с их представителями, общими признаками каждой группы. ...
Роль растений в природе, жизни человека и собственной деятельности 6 класс

Роль растений в природе, жизни человека и собственной деятельности 6 класс

Урок биологии с краеведением в 6 классе. Тема: «Роль растений в природе, жизни человека и собственной деятельности». Цели:. . Обобщить ...
Разнообразие голосеменных растений, их значение в природе и жизни человека

Разнообразие голосеменных растений, их значение в природе и жизни человека

Муниципальное бюджетное общеобразовательное учреждение. «Хотьковская средняя общеобразовательная школа №5». Конспект урока. по ...
Молекулярный уровень организации живой природы

Молекулярный уровень организации живой природы

Молекулярный уровень организации живой природы. (урок в 9 классе). Тема:. Молекулярный уровень организации живой природы. Цель урока:. повторить ...
Многообразие растений семейства Розоцветные, их значение в природе и жизни человека

Многообразие растений семейства Розоцветные, их значение в природе и жизни человека

Урок Краеведения в 6а классе. . в рамках методического дня «Открытая книга». Тема урока:. «Многообразие растений семейства Розоцветные, их значение ...
Динамика численности популяций и её регуляция в природе

Динамика численности популяций и её регуляция в природе

Динамика численности популяций и её регуляция в природе. Опрос. У доски:. Карточка 1. . . Что такое плотность? . Какие изменения ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 января 2019
Категория:Биология
Классы:
Содержит:35 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации