- Как считали в древности

Презентация "Как считали в древности" (4 класс) по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20

Презентацию на тему "Как считали в древности" (4 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 20 слайд(ов).

Слайды презентации

КАК ЛЮДИ В СТАРИНУ СЧИТАЛИ
Слайд 1

КАК ЛЮДИ В СТАРИНУ СЧИТАЛИ

Первобытные народы считают. Числа получают имена. Операции над числами. Древняя Греция Древний Рим. Шумерская клинопись. Древний Египет Вавилония Индия и Китай
Слайд 2

Первобытные народы считают

Числа получают имена

Операции над числами

Древняя Греция Древний Рим

Шумерская клинопись

Древний Египет Вавилония Индия и Китай

Ещё недавно существовали племена, в языке которых были названия только двух чисел: один и два. Туземцы считали так : 1 - «урапун» 2 - «окоза» 3 - «окоза - урапун» 4 - «окоза - окоза» 5 - «окоза - окоза - урапун». . . . . Все остальные числа - «МНОГО» ! Видно, что люди освоили только небольшое количе
Слайд 3

Ещё недавно существовали племена, в языке которых были названия только двух чисел: один и два. Туземцы считали так : 1 - «урапун» 2 - «окоза» 3 - «окоза - урапун» 4 - «окоза - окоза» 5 - «окоза - окоза - урапун». . . . . Все остальные числа - «МНОГО» ! Видно, что люди освоили только небольшое количество целых чисел.

Первыми понятиями математики были "меньше", "больше" и "столько же". Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Многие русские пословицы говорят о том, что так же дело обстояло и у наших предков: «У семи нянек дитя без глаза» «Семь бед - один ответ» «Семеро одного не ждут» «Семь раз отмерь, один раз отрежь». Туземцы Новой Гвинеи загибают один за другим пальцы руки, приговаривая «бе - бе - бе…». Досчитав до ПЯ
Слайд 4

Многие русские пословицы говорят о том, что так же дело обстояло и у наших предков: «У семи нянек дитя без глаза» «Семь бед - один ответ» «Семеро одного не ждут» «Семь раз отмерь, один раз отрежь»

Туземцы Новой Гвинеи загибают один за другим пальцы руки, приговаривая «бе - бе - бе…». Досчитав до ПЯТИ, говорит «ибон - бе» (РУКА). Затем загибают пальцы другой руки «бе - бе..», пока не доходит до «ибон - али» (ДВЕ РУКИ). Для дальнейшего счёта используются пальцы ног, а затем….

руки и ноги кого-нибудь другого !

Число употребляется в смысле

"много" "семь" Дальше Назад

Однако, у большинства народов числа, которыми считали «деньги» (а в качестве денег в основном служил скот), постепенно вытеснили все остальные. Они-то и стали теми универсальными числами, которые позволили считать любые предметы. Люди постепенно привыкали при счёте располагать предметы устойчивыми г
Слайд 5

Однако, у большинства народов числа, которыми считали «деньги» (а в качестве денег в основном служил скот), постепенно вытеснили все остальные. Они-то и стали теми универсальными числами, которые позволили считать любые предметы.

Люди постепенно привыкали при счёте располагать предметы устойчивыми группами по два, по десять или по двенадцать. Но отдельных имён у чисел ещё не было.У туземцев Флориды слово «на-куа» означало 10 яиц, «на-банара» - 10 корзин, но слово «на», которое, казалось бы, соответствовало числу 10, отдельно не употреблялось.

Числа начинают получать имена

Так, индивидуальные названия получили числа меньше 10, а также десять, сто, тысяча. С операциями сложения и вычитания люди имели дело задолго до того, как числа получили имена. Когда несколько групп сборщиков кореньев или рыболовов складывали в одно место свою добычу, они выполняли операцию сложения
Слайд 6

Так, индивидуальные названия получили числа меньше 10, а также десять, сто, тысяча.

С операциями сложения и вычитания люди имели дело задолго до того, как числа получили имена. Когда несколько групп сборщиков кореньев или рыболовов складывали в одно место свою добычу, они выполняли операцию сложения.

С операцией умножения люди познакомились, когда стали сеять хлеб и увидели, что собранный урожай в несколько раз больше, чем количество посеянных семян. Говорили: собрали урожай "сам-двадцать", т. е. в двадцать раз больше собрали, чем посеяли. Наконец, когда добытое мясо животных или собранные орехи делили поровну между всеми "ртами", выполнялась операция деления.

В середине V в. до н.э. В Малой Азии, где были древнегреческие колонии, появилась система счисления нового типа -. Её обычно называют ионийской. В этой системе числа обозначались при помощи букв алфавита, над которыми ставились черточки. Первые девять букв обозначали числа от 1 до 9, следующие девят
Слайд 7

В середине V в. до н.э. В Малой Азии, где были древнегреческие колонии, появилась система счисления нового типа -

Её обычно называют ионийской. В этой системе числа обозначались при помощи букв алфавита, над которыми ставились черточки. Первые девять букв обозначали числа от 1 до 9, следующие девять 10, 20...90 и следующие девять-числа 100, 200..900. Так можно было обозначать любое число до 999.

алфавитная нумерация

Для тысяч употреблялись опять первые девять букв, но - с косой черточкой слева внизу. Для числа 10000 употреблялся знак М, Над знаком ставилось число, обозначающее количество мириад. Так можно было обозначить все числа до мириады мириад, т.е. 108. это число называлось МИРИАДОЙ. Великий математик, ме
Слайд 8

Для тысяч употреблялись опять первые девять букв, но - с косой черточкой слева внизу. Для числа 10000 употреблялся знак М,

Над знаком ставилось число, обозначающее количество мириад. Так можно было обозначить все числа до мириады мириад, т.е. 108.

это число называлось МИРИАДОЙ

Великий математик, механик и инженер древности

посвятил целое сочинение тому, чтобы дать общий приём наименования сколь угодно больших чисел.

АРХИМЕД ( III в. до н.э.)

Часто в сказках встречается «неразрешимая» задача:сосчитать, сколько звёзд на небе, капель в море или сколько песчинок на земле. Архимед показал, что такие задачи можно решать. Своё сочинение он так и назвал. («Псаммит»). Чтобы решить поставленную задачу, Архимед все числа меньше мириады мириад объе
Слайд 9

Часто в сказках встречается «неразрешимая» задача:сосчитать, сколько звёзд на небе, капель в море или сколько песчинок на земле. Архимед показал, что такие задачи можно решать. Своё сочинение он так и назвал

(«Псаммит»). Чтобы решить поставленную задачу, Архимед все числа меньше мириады мириад объединяет в первую и называет их первыми числами. Вторые числа от 108 до 1016 …И далее можно наращивать разряды. Способ Архимеда близок к позиционному,

"Исчисление песка"

прежде чем человечеству удалось создать десятичную позиционную систему счисления.

НО понадобилось ещё около 1000 лет,

ОКТАДУ

ЦИФРЫ В ДРЕВНЕМ РИМЕ. В римской системе имеются специальные знаки для : I - 1 VI - 6 II - 2 VII - 7 III - 3 VIII - 8 IV - 4 IX - 9 V - 5 X - 10 L - 50	D - 500 C - 100	M -1000. Остальные числа записываются при помощи этих символов с применением сложения и вычитания. Число 444 запишется в римской сист
Слайд 10

ЦИФРЫ В ДРЕВНЕМ РИМЕ

В римской системе имеются специальные знаки для : I - 1 VI - 6 II - 2 VII - 7 III - 3 VIII - 8 IV - 4 IX - 9 V - 5 X - 10 L - 50 D - 500 C - 100 M -1000

Остальные числа записываются при помощи этих символов с применением сложения и вычитания. Число 444 запишется в римской системе так Эта форма записи менее удобна , чем та, которой мы пользуемся. Запись чисел получается намного длиннее. В римской системе есть и еще один существующий недостаток: она не дает способа для записи сколь угодно больших чисел.

CDXLIV

Вот принес земледелец выращенный им лук сборщику податей в деревне стран Шумер . "Сум!"- сказал сборщик, потому что "сум" по-шумерски значило «лук»- и нарисовал пучок лука на сырой глиняной табличке, которую держал в руке. Шумерские счетоводы годами рисовали рыб и птиц, скот и ра
Слайд 11

Вот принес земледелец выращенный им лук сборщику податей в деревне стран Шумер . "Сум!"- сказал сборщик, потому что "сум" по-шумерски значило «лук»- и нарисовал пучок лука на сырой глиняной табличке, которую держал в руке. Шумерские счетоводы годами рисовали рыб и птиц, скот и растения. Четкие плавные линии требовали много труда, да и все равно они плохо сохраняли свою форму. Потом все знаки стали чертить на глине так, что они оказались повернутыми набок.

Почему так получилось? Дело в том, что сначала писали на глине столбцами сверху вниз и каждый следующий столбец начинали левее предыдущего. Но при этом рукой смазывали то, что было написано перед этим. Поэтому плитку стали поворачивать на четверть оборота и стали писать те же самые знаки строчками, слева направо (и каждую следующую строку начинали ниже предыдущей).

Перевёрнутые птицы и животные оказывались ни на что не похожи. Это-то и привело счетоводов к любопытному открытию . Они поняли, что вовсе ни к чему делать похожие рисунки. На этом перемены не кончились. Избавились и от извилистых линий, а просто вдавливали стиль в глину и сразу отнимали его. На глин
Слайд 12

Перевёрнутые птицы и животные оказывались ни на что не похожи. Это-то и привело счетоводов к любопытному открытию . Они поняли, что вовсе ни к чему делать похожие рисунки. На этом перемены не кончились. Избавились и от извилистых линий, а просто вдавливали стиль в глину и сразу отнимали его. На глине оставались четкие клинообразные следы. Это так и называется - КЛИНОПИСЬ.

Годится любой значок, лишь бы все условились,

что он будет обозначать.

"А для низкой жизни были числа, Как домашний подъяремный скот, Потому что все оттенки смысла Умное число передает". Русский поэт Николай Гумилев выразил значение этого открытия словами:
Слайд 13

"А для низкой жизни были числа, Как домашний подъяремный скот, Потому что все оттенки смысла Умное число передает".

Русский поэт Николай Гумилев выразил значение этого открытия словами:

Это одна из древнейших нумераций. Надписи египтян состоят из картинок - иероглифов. Сохранились два математических папируса, позволяющие судить о том, как считали древние египтяне. Полагают, что иероглиф для сотни изображает измерительную верёвку, для тысячи -цветок лотоса,
Слайд 14

Это одна из древнейших нумераций. Надписи египтян состоят из картинок - иероглифов. Сохранились два математических папируса, позволяющие судить о том, как считали древние египтяне. Полагают, что иероглиф для сотни изображает измерительную верёвку, для тысячи -цветок лотоса,

Оказывается, умножение и деление они производили путем последовательного удвоения чисел - фактически представлением числа. по двоичной системе. для десяти тысяч - поднятый кверху палец, сто тысяч - лягушку, миллион - человек с поднятыми руками, десять миллионов - вся Вселенная. Как же считали древни
Слайд 15

Оказывается, умножение и деление они производили путем последовательного удвоения чисел - фактически представлением числа

по двоичной системе

для десяти тысяч - поднятый кверху палец, сто тысяч - лягушку, миллион - человек с поднятыми руками, десять миллионов - вся Вселенная.

Как же считали древние египтяне ?

ВАВИЛОНИЯ. Первой известной известной нам позиционной системой счисления была. Вавилоняне поступали так: записывали все числа от 1 до 59 по десятичной системе, применяя принцип сложения. При этом они пользовались всегда двумя знаками: прямым клином для обозначения 1 и лежачим клином для 10. Эти знак
Слайд 16

ВАВИЛОНИЯ

Первой известной известной нам позиционной системой счисления была

Вавилоняне поступали так: записывали все числа от 1 до 59 по десятичной системе, применяя принцип сложения. При этом они пользовались всегда двумя знаками: прямым клином для обозначения 1 и лежачим клином для 10. Эти знаки и служили цифрами в их системе. Число 60 снова обозначалось тем же знаком, что и 1, т.е. .

вавилонян, возникшая примерно 2500 - 2000 лет до н.э. Основанием ее служило число 60.

шестидесятеричная система

Как же вавилоняне записывали свои цифры?

Так же обозначались и все другие степени 60. Таким образом, «цифры», т.е. все числа от 1 до 59, вавилоняне записывали по десятичной непозицион-ной системе, а число в целом - по позиционной системе с основанием 60. Поэтому-то мы и называем их систему шестидесятеричной. Но нумерация вавилонян имела и
Слайд 17

Так же обозначались и все другие степени 60. Таким образом, «цифры», т.е. все числа от 1 до 59, вавилоняне записывали по десятичной непозицион-ной системе, а число в целом - по позиционной системе с основанием 60. Поэтому-то мы и называем их систему шестидесятеричной. Но нумерация вавилонян имела и еще одну важную особенность:

И если был изображён прямой клин , то без дополнительных пояснений нельзя было определить, какое число записано: 1, 60, 3600 или какая - нибудь другая степень 60. Впоследствии

в ней не было знака для НУЛЯ

вавилоняне ввели специальный символ для обозначения пропущенного шестидесятичного разряда.

В Индии и Китае. Позиционные системы счисления возникли независимо одна от другой в древнем Двуречье, у майя и в Индии. В древней Индии и Китае существовали системы записи, построенные на принципе. В таких системах для записи одинакового числа единиц, десятков,сотен или тысяч применяются одни и те ж
Слайд 18

В Индии и Китае.

Позиционные системы счисления возникли независимо одна от другой в древнем Двуречье, у майя и в Индии. В древней Индии и Китае существовали системы записи, построенные на принципе. В таких системах для записи одинакового числа единиц, десятков,сотен или тысяч применяются одни и те же символы, но после каждого символа пишется название соответствующего разряда.

Что привело людей к этому открытию ?

МУЛЬТИПЛИКАТИВНОМ

Индийцы издавна проявляли глубокий интерес к большим числам и способам их записи. царственных невест соревновались не только в борьбе или стрельбе из лука, но и в письменности и арифметике. Между II и VI вв.н.э. Индийцы познакомились с греческой астрономией. Одновременно они познакомились с 60-рично
Слайд 19

Индийцы издавна проявляли глубокий интерес к большим числам и способам их записи. царственных невест соревновались не только в борьбе или стрельбе из лука, но и в письменности и арифметике.

Между II и VI вв.н.э. Индийцы познакомились с греческой астрономией. Одновременно они познакомились с 60-ричной нумерацией и греческим круглым нулём.

Если десятки обозначить символом Д, а сотни - С, то число 325 будет выглядеть так : 3С2Д5.

ЖЕНИХИ

Индийцы и соединили греческие принципы нумерации со своей десятичной мультипликативной системой.

ЭТО И БЫЛ ЗАВЕРШАЮЩИЙ ШАГ В СОЗДАНИИ НАШЕЙ НУМЕРАЦИИ.
Слайд 20

ЭТО И БЫЛ ЗАВЕРШАЮЩИЙ ШАГ В СОЗДАНИИ НАШЕЙ НУМЕРАЦИИ.

Список похожих презентаций

Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

Самостоятельная работа. Вариант I Вариант II. Выполнить действия в двоичной системе счисления:. 1) 101012 + 1012 2) 101012 + 10102 3) 1000012 – 1102 ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
Алгебра в 9 классе.

Алгебра в 9 классе.

Функция их свойства и графики. Сформулируйте определение чётной функции, определение нечётной функции. Не является ни чётной, ни нечётной. чётная ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Алгебраические поверхности в пространстве

Алгебраические поверхности в пространстве

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Алгебраические поверхности второго порядка в пространстве» Задачи: Рассмотреть понятие ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
Арифметическая и геометрическая прогрессии в заданиях ГИА

Арифметическая и геометрическая прогрессии в заданиях ГИА

Цели урока: Обобщить и систематизировать знания учащихся по данной теме. Разобрать типичные задания встречающихся в сборниках для подготовки к ГИА. ...

Конспекты

Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 августа 2018
Категория:Математика
Содержит:20 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации