- Звездчатые многогранники

Презентация "Звездчатые многогранники" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16

Презентацию на тему "Звездчатые многогранники" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 16 слайд(ов).

Слайды презентации

Звездчатые многогранники. Презентация: Учениц 10 «А» класса Агаповой Ольги Акимовой Анастасии Акчуриной Олеси Броцман Кристины Шароновой Наталии Эврюковой Елизаветы
Слайд 1

Звездчатые многогранники

Презентация: Учениц 10 «А» класса Агаповой Ольги Акимовой Анастасии Акчуриной Олеси Броцман Кристины Шароновой Наталии Эврюковой Елизаветы

Звёздчатый многогранник (звёздчатое тело) — это невыпуклый многогранник, грани которого пересекаются между собой. Как и у незвёздчатых многогранников грани попарно соединяются в ребрах, при этом внутренние линии пересечения не считаются рёбрами. Звёздчатой формой многогранника называется многогранни
Слайд 2

Звёздчатый многогранник (звёздчатое тело) — это невыпуклый многогранник, грани которого пересекаются между собой. Как и у незвёздчатых многогранников грани попарно соединяются в ребрах, при этом внутренние линии пересечения не считаются рёбрами. Звёздчатой формой многогранника называется многогранник, полученный путём продления граней данного многогранника через рёбра до их следующего пересечения с другими гранями по новым рёбрам.

Гравюра Эшера Мориса

Правильные звёздчатые многогранники - это звёздчатые многогранники, гранями которых являются одинаковые правильные или звёздчатые многоугольники. Коши установил, что существует всего 4 правильных звёздчатых тела, не являющиеся соединениями платоновых и звёздчатых тел, называемые телами Кепплера-Пуан
Слайд 3

Правильные звёздчатые многогранники - это звёздчатые многогранники, гранями которых являются одинаковые правильные или звёздчатые многоугольники. Коши установил, что существует всего 4 правильных звёздчатых тела, не являющиеся соединениями платоновых и звёздчатых тел, называемые телами Кепплера-Пуансо: все 3 звёздчатых формы додекаэдра и одна из звёздчатых форм икосаэдра. Остальные правильные звёздчатые многогранники являются или соединениями платоновых тел, или соединениями тел Кепплера-Пуансо.

Существует только одна звёздчатая форма октаэдра. Звёздчатый октаэдр был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт Иоганном Кеплером, и назван им Stella octangula — звезда восьмиугольная. Отсюда эта форма имеет и второе название «stella octangula Кеплера». По сути она является
Слайд 4

Существует только одна звёздчатая форма октаэдра. Звёздчатый октаэдр был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт Иоганном Кеплером, и назван им Stella octangula — звезда восьмиугольная. Отсюда эта форма имеет и второе название «stella octangula Кеплера». По сути она является соединением двух тетраэдров.

Иоганн Кеплер

Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр (звёздчатый большой додекаэдр, завершающая форма). Первые две из них были открыты Кеплером (1619), третья — Пуансо (1809). В отличие от октаэдра любая из звёздчатых форм додекаэдра не явля
Слайд 5

Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр (звёздчатый большой додекаэдр, завершающая форма). Первые две из них были открыты Кеплером (1619), третья — Пуансо (1809). В отличие от октаэдра любая из звёздчатых форм додекаэдра не является соединением платоновых тел, а образует новый многогранник. Все 3 звёздчатые формы додекаэдра, вместе с большим икосаэдром образуют семейство тел Кеплера-Пуансо, то есть правильных невыпуклых (звёздчатых) многогранников. У большого додекаэдра гранями являются пятиугольники, которые, сходятся по пять в каждой из вершин. У малого звёздчатого и большого звёздчатого додекаэдров грани - пятиконечные звёзды (пентаграммы), которые в первом случае сходятся по 5, а во втором по 3.

малый звёздчатый додекаэдр большой додэкаэдр большой звездчатый додэкаэдр

В работе "О многоугольниках и многогранниках" (1810) Пуансо описал четыре правильных звездчатых многогранника, но вопрос о существовании других таких многогранников оставался открытым. Ответ на него был дан год спустя, в 1811 году, французским математиком О. Коши. В работе «Исследование о
Слайд 6

В работе "О многоугольниках и многогранниках" (1810) Пуансо описал четыре правильных звездчатых многогранника, но вопрос о существовании других таких многогранников оставался открытым. Ответ на него был дан год спустя, в 1811 году, французским математиком О. Коши. В работе «Исследование о многогранниках» он доказал, что других правильных звездчатых многогранников не существует.

О.Коши Луи Пуансо

Кроме правильных звездчатых многогранников существуют и другие звездчатые формы, получающиеся продолжением граней правильных и полуправильных многогранников. Продолжения граней кубооктаэдра приводят к четырем звездчатым многогранникам. Они представлены на рисунке 21.
Слайд 7

Кроме правильных звездчатых многогранников существуют и другие звездчатые формы, получающиеся продолжением граней правильных и полуправильных многогранников. Продолжения граней кубооктаэдра приводят к четырем звездчатым многогранникам. Они представлены на рисунке 21.

Икосододекаэдр имеет 19 звездчатых форм, три из которых представлены на рисунке 22.
Слайд 8

Икосододекаэдр имеет 19 звездчатых форм, три из которых представлены на рисунке 22.

Наконец, икосаэдр имеет 59 звездчатых форм, три из которых представлены на рисунке 23.
Слайд 9

Наконец, икосаэдр имеет 59 звездчатых форм, три из которых представлены на рисунке 23.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа в виде кристаллов. Снежинки - это тоже звездчатые многог
Слайд 10

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа в виде кристаллов. Снежинки - это тоже звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Модель большого додекаэдра использовали в качестве памятника к одной из годовщин Победы. Установлена она на питерском проспекте Науки (недалеко от метро "Академическая").
Слайд 11

Модель большого додекаэдра использовали в качестве памятника к одной из годовщин Победы. Установлена она на питерском проспекте Науки (недалеко от метро "Академическая").

Ниже показана мраморная инкрустация, которая изображает небольшой звездчатый додекаэдр, расположенных в полу базилики святого Марка в Венеции. Предположительно она была создана итальянским художником XIV века Пауло Учелло еще в 1420 году. Если это действительно так то открытие многогранника произошл
Слайд 12

Ниже показана мраморная инкрустация, которая изображает небольшой звездчатый додекаэдр, расположенных в полу базилики святого Марка в Венеции. Предположительно она была создана итальянским художником XIV века Пауло Учелло еще в 1420 году. Если это действительно так то открытие многогранника произошло за двести лет до математического описания этого же многогранник в 1619 Кеплером.

Открыв малый звездчатый додэкаэдр, Кеплер назвал его «еж» и поместил в свою удивительную по фантастичности идей книгу «Мировая гармония» Но ученые отказывались считать кеплеровского ежа многогранником. У этого упрямства была своя логика и своя предыстория. Столетиями математики не признавали за всяк
Слайд 13

Открыв малый звездчатый додэкаэдр, Кеплер назвал его «еж» и поместил в свою удивительную по фантастичности идей книгу «Мировая гармония» Но ученые отказывались считать кеплеровского ежа многогранником. У этого упрямства была своя логика и своя предыстория. Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются.

А тут — геометрическое тело, гранями которого служат пятиконечные звезды, да еще вдобавок пересекающиеся! Довод был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера: Высоты + Грани – Ребра = 2. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины. Тогда В + Г - Р = 32 + 60 – 90 = 2 как и положено. Кеплер не додумался, что у полученной им фигуры есть двойник. Это увидел Август Фердинад Мебиус, а сам многогранник — «большой додекаэдр» — построил французский геометр Луи Пуансо, спустя без малого двести лет после кеплеровских звездчатых фигур.

Рисуя правильные многогранники в книге Луки Пачоли «О божественной пропорции», Леонардо да Винчи не пользовался циркулем и линейкой. По его записям также видно, что он мало вычислял. Практически нет никаких сомнений, что он рисовал многогранники со сделанных его руками моделей. Лука Пачоли обращает
Слайд 14

Рисуя правильные многогранники в книге Луки Пачоли «О божественной пропорции», Леонардо да Винчи не пользовался циркулем и линейкой. По его записям также видно, что он мало вычислял. Практически нет никаких сомнений, что он рисовал многогранники со сделанных его руками моделей. Лука Пачоли обращает внимание на перспективное представление 60 сделанных им рисунков, что также свидетельствует о большой предварительной работе, проделанной им по изготовлению этих моделей. В связи с затронутой нами темой Брагина пишет: «Здесь он [Лука Пачоли] вновь воздает хвалу рисункам Леонардо, сделанным для его книги "О божественной пропорции". Леонардо создал прекрасные фигуры многогранников — "высочайшего [уровня] легчайшие [изящные] фигуры всех платоновских и математических тел, как правильных, так и производных [от правильных], рисунки которых выполнил в изометрической перспективе столь совершенно, что лучше сделать было бы невозможно…".

Звездчатый октаэдр

Малый звездчатый додекаэдр

Гравюры Эшера Мориса. Хаос и порядок Тяготение Двойная планета
Слайд 15

Гравюры Эшера Мориса

Хаос и порядок Тяготение Двойная планета

Спасибо за внимание!
Слайд 16

Спасибо за внимание!

Список похожих презентаций

Правильные многогранники

Правильные многогранники

Определение правильного многогранника. Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и ...
Платоновы тела Правильные выпуклые многогранники

Платоновы тела Правильные выпуклые многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Правильные многогранники

Правильные многогранники

Что такое правильный многогранник? Правильный многогранник - многогранник, все грани которого - одинаковые правильные многоугольники и все многогранные ...
Правильные многогранники и их приметы

Правильные многогранники и их приметы

Многогранник называется правильным если:. 1) ОН ВЫПУКЛЫЙ. (Т.Е. ЛЕЖИТ ПО ОДНУ СТОРОНУ ОТ ПЛОСКОСТИ КАЖДОЙ ГРАНИ). 2) ВСЕ ЕГО ГРАНИ – РАВНЫЕ ПРАВИЛЬНЫЕ ...
Разные задачи повышенного уровня сложности на многогранники, цилиндры, косинус и шар

Разные задачи повышенного уровня сложности на многогранники, цилиндры, косинус и шар

Величина двугранного угла между смежными боковыми гранями правильной четырехугольной пирамиды равна α. Определить величину двугранного угла между ...
Правильные многогранники в геометрии

Правильные многогранники в геометрии

Цели: Знакомить учащихся с новым типом многогранников - правильными многогранниками. Показать влияние правильных многогранников на возникновение филосовских ...
Правильные многогранники в четырехмерном пространстве

Правильные многогранники в четырехмерном пространстве

Абстрактный Тороидальный Гексадекаэдр — это комбинаторно-топологический объект — правильная триангуляция тора с 8 вершинами и 16 гранями. С. А. Л., ...
Правильные многогранники

Правильные многогранники

Правильные многогранники. – это выпуклый многогранник, у которого гранями являются правильные многоугольники и все многогранные углы равны. Полуправильные ...
Правильные многогранники

Правильные многогранники

Геометрический кроссворд. Какое тело носит имя Хеопса? Что представляет собой боковая грань пирамиды? Как называется правильный четырехугольник? Наука ...
Правильные и полуправильные многогранники

Правильные и полуправильные многогранники

Учение о правильных многогранниках изложил в своих трудах Платон. С тех пор правильные многогранники называют Платоновыми телами. Существует пять ...
Правильные многогранники

Правильные многогранники

Две точки А и А1 называются симметричными относительно точки О, если О — середина отрезка АА1. Точка О считается симметричной самой себе. Симметрия ...
Правильные и полуправильные многогранники

Правильные и полуправильные многогранники

СОДЕРЖАНИЕ. Правильные и полуправильные многогранники Тела Архимеда Леонардо да Винчи. Правильным многогранником называется выпуклый многогранник, ...
Правильные выпуклые многогранники

Правильные выпуклые многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Полуправильные многогранники

Полуправильные многогранники

Полуправильный многогранник -многогранник, у которого все его многогранные углы равны между собой (но не обязательно правильные), а все его грани- ...
Правильные многогранники

Правильные многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Правильные многогранники

Правильные многогранники

Правильный многогранник или платоново тело — это выпуклый многогранник с равными гранями, которые составляют правильные многоугольники. Существует ...
Правильные многогранники

Правильные многогранники

Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Грани многогранника - это многоугольники, которые ...
Правильные многогранники

Правильные многогранники

СИММЕТРИЯ В ПРОСТРАНСТВЕ. “Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту и совершенство” (Г.Вейль). ...
Правильные многогранники в жизни

Правильные многогранники в жизни

Цели:. Изучить виды, свойства правильных многогранников Рассмотреть использование геометрических тел в архитектуре Изучить один из видов искусства ...
Правильные многогранники

Правильные многогранники

Первым свойства правильных многогранников описал древнегреческий ученый Платон. Именно поэтому правильные многогранники называют также телами Платона. ...

Конспекты

Правильные многогранники

Правильные многогранники

Урок геометрии в 11 классе. «Правильные многогранники». Учитель математики КГУ «Гимназия №6 г. Семей» Бочарова Галина Борисовна. Цель: Знакомство ...
Правильные многогранники

Правильные многогранники

2. . . Конспект урока геометрии с применением ИКТ в 10 классе. Тема:. Правильные многогран. ники. Цели урока:. Предметный компонент:. Изучение ...
Правильные многогранники

Правильные многогранники

Урок по теме: «Правильные многогранники». Тип урока:. изучение нового материала. Продолжительность урока. : 2 урока по 45 минут. Цель урока:. ...
Правильные многогранники

Правильные многогранники

Тема урока: "Правильные многогранники". (10 класс). Учитель математики Иманова Алена Викторовна. МБОУ «Средняя общеобразовательная школа №21». ...
Правильные многогранники

Правильные многогранники

Муниципальное общеобразовательное учреждение. . средняя общеобразовательная школа №5. Урок геометрии в 11 классе. «Правильные многогранники». ...
Вписанные и описанные многогранники

Вписанные и описанные многогранники

Открытый урок по теме «Вписанные и описанные многогранники». Тема урока: Сфера, вписанная в пирамиду. Сфера, описанная около пирамиды. Тип урока:. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:ученица Акчурина Олеся Марсовна
Содержит:16 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации