- Правильный многогранник

Презентация "Правильный многогранник" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16

Презентацию на тему "Правильный многогранник" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 16 слайд(ов).

Слайды презентации

Правильный многогранник
Слайд 1

Правильный многогранник

Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией. Многогранник называется правильным, если: 1.он выпуклый; 2.все его грани являются равными правильными многоугольниками; 3.в каждой его
Слайд 2

Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией. Многогранник называется правильным, если: 1.он выпуклый; 2.все его грани являются равными правильными многоугольниками; 3.в каждой его вершине сходится одинаковое число рёбер.

ВИДЫ МНОГОГРАННИКОВ
Слайд 3

ВИДЫ МНОГОГРАННИКОВ

Тетраэдр(четырёхгранник) -- многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.
Слайд 4

Тетраэдр(четырёхгранник) -- многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Октаэдр-- один из пяти выпуклых правильных многогранников, так называемых Платоновых тел. Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.
Слайд 5

Октаэдр-- один из пяти выпуклых правильных многогранников, так называемых Платоновых тел. Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.

Икосаэдр-- правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин -- 12.
Слайд 6

Икосаэдр-- правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин -- 12.

Куб или правильный гексаэдр -- правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.
Слайд 7

Куб или правильный гексаэдр -- правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.

Додекаэдр (двенадцатигранник) -- правильный многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра)
Слайд 8

Додекаэдр (двенадцатигранник) -- правильный многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра)

Геометрические свойства. Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г: Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный
Слайд 9

Геометрические свойства

Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г: Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой — радиус вписанной сферы r:

История. Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных много
Слайд 10

История

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинско
Слайд 11

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставля
Слайд 12

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух — октаэдру, вода — икосаэдру, а огонь — тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца»

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13—17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ре
Слайд 13

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13—17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников.

В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранник
Слайд 14

В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками.

Многогранники в природе. Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Шеелит (пирамида) Хрусталь (призма). Поваренная соль (куб). Алмаз (октаэдр)
Слайд 15

Многогранники в природе

Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов

Шеелит (пирамида) Хрусталь (призма)

Поваренная соль (куб)

Алмаз (октаэдр)

ПРОЕКТ ПОДГОТОВИЛА УЧЕНИЦА 9-Б КЛАССА БАРАНОВА ЕЛЕНА
Слайд 16

ПРОЕКТ ПОДГОТОВИЛА УЧЕНИЦА 9-Б КЛАССА БАРАНОВА ЕЛЕНА

Список похожих презентаций

Правильный многогранник

Правильный многогранник

«Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук». Льюис Кэролл. ...
Правильный додекаэдр

Правильный додекаэдр

План:. Определение Свойства Формулы Элементы Рисунок Развертка. Определение:. Додека́эдр (от греч. dodeka — двенадцать и hedra — грань), двенадцатигранник ...
Сфера вписанная в многогранник

Сфера вписанная в многогранник

Определение Многогранник называется описанным около сферы(а сфера вписанной в многогранник), если все грани многогранника касаются этой сферы. Следствие ...
Решение задач по теме "Правильный многоугольник"

Решение задач по теме "Правильный многоугольник"

Систематизация знаний. № 1088 – выполняем по вариантам в тетрадях. Построение правильного шестиугольника, сторона которого равна данному отрезку. ...
Правильный многоугольник

Правильный многоугольник

Цели урока:. Повторение свойств биссектрисы угла и серединного перпендикуляра к отрезку, признака равнобедренного треугольника, свойства касательной ...
Правильный многоугольник

Правильный многоугольник

Ход урока: 1.Актуализация опорных знаний учащихся: Повторить формулу суммы углов выпуклого многоугольника 2.Изучение нового материала Определение ...
Правильный многоугольник

Правильный многоугольник

СОДЕРЖАНИЕ. Из истории Общие сведения Правильные многогранники Паркеты из правильных многоугольников Правильные многоугольники в природе Симметрия ...
Правильный  многоугольник

Правильный многоугольник

Цели урока:. Повторение свойств биссектрисы угла и серединного перпендикуляра к отрезку, признака равнобедренного треугольника, свойства касательной ...
Занимательная и информатика и математика для начальной школы

Занимательная и информатика и математика для начальной школы

Постановка задачи: Разработка Интернет ресурса, содержащего комплекты иллюстрированных заданий и филвордов. Особенности разработки: 1. Поиск занимательных ...
ЕГЭ математика задания В9

ЕГЭ математика задания В9

Задачи В 9 (ЕГЭ). B9 (№ 25775) Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите V/п. Решение: 1) Находим объём нижнего цилиндра: ...
Конкурсный урок математика

Конкурсный урок математика

У Ромы не «3», а у Лены не «3» и не «5». Кто какую отметку получил? Проверь себя! 4 5. Запомни! . . Какую из этих схем составила Таня? I способ: 90 ...
Занимательная математика Думай, считай, отгадывай!

Занимательная математика Думай, считай, отгадывай!

г.Санкт-Петербург. Ростральная колонна. телевизионная башня. Исаакиевский собор. Зимний дворец. Нева. а) Высота Ростральных колонн (в метрах). б) ...
Занимательная математика

Занимательная математика

Добрый день! Приветствую вас, мои юные друзья математики. Удачи вам! Ваш друг Математик. Славянская кириллическая десятеричная алфавитная нумерация. ...
Занимательная математика

Занимательная математика

Внеклассное мероприятие по математике. Михаил Юрьевич Лермонтов. Автор: Лазарева Ирина Владимировна Учитель математики, г. Москва, ГБОУ ЦСиО «Самбо-70» ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
Занимательная математика

Занимательная математика

Задачи: Закрепление умений и навыков, полученных на уроках математики. Расширение кругозора учащихся. Привитие интереса к математике. Цели урока: ...
Занимательная математика

Занимательная математика

На день какого святого наши предки имели обычай отдавать своих детей в учение? Чтобы ответить на вопрос, выполните действия и составьте слово, расположив ...
«Координатная плоскость» математика

«Координатная плоскость» математика

Цели и задачи урока:. 1. Ввести понятие координатной плоскости, уметь определять координаты точек, строить точки по их координатам. 2. Развивать мышление, ...
Занимательная математика

Занимательная математика

Хочу стать фокусником…. Искусство отгадывать числа. Есть фокус по отгадыванию чисел: «фокусник» просит вас складывать, умножать, вычитать задуманное ...
«Своя игра» математика

«Своя игра» математика

Условия игры:. Участники сами выбирают темы и вопросы. Вопрос выбирает правильно ответившая команда. 210 – 250 баллов – отметка «5». 110 -200 баллов ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 апреля 2019
Категория:Математика
Содержит:16 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации