- Движения в пространстве Центральная симметрия Осевая симметрия Зеркальная симметрия Параллельный перенос

Презентация "Движения в пространстве Центральная симметрия Осевая симметрия Зеркальная симметрия Параллельный перенос" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46

Презентацию на тему "Движения в пространстве Центральная симметрия Осевая симметрия Зеркальная симметрия Параллельный перенос" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 46 слайд(ов).

Слайды презентации

Урок геометрии в 11 классе учителя Текутовой И.Н. Движения в пространстве Центральная симметрия Осевая симметрия Зеркальная симметрия Параллельный перенос. У
Слайд 1

Урок геометрии в 11 классе учителя Текутовой И.Н.

Движения в пространстве Центральная симметрия Осевая симметрия Зеркальная симметрия Параллельный перенос

У

Форма урока: Урок – семинар, решение проблемного вопроса. Цели урока: Актуализировать личностное осмысление учащимися учебного материала «Движения в пространстве» Содействовать сознательному пониманию прикладного значения темы, развитию умения видеть в окружающей действительности изучаемые виды движ
Слайд 2

Форма урока: Урок – семинар, решение проблемного вопроса

Цели урока: Актуализировать личностное осмысление учащимися учебного материала «Движения в пространстве» Содействовать сознательному пониманию прикладного значения темы, развитию умения видеть в окружающей действительности изучаемые виды движений Развивать познавательный интерес к построению образов объектов при различных видах движений Способствовать грамотному усвоению темы, отработке практических навыков

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство. Г. Вейль.
Слайд 3

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство. Г. Вейль.

Движение пространства - это отображение пространства на себя, сохраняющее расстояние между точками.
Слайд 4

Движение пространства - это отображение пространства на себя, сохраняющее расстояние между точками.

Центральная симметрия
Слайд 5

Центральная симметрия

Центральная симметрия – отображение пространства на себе, при котором любая точка М переходит в симметричную ей точку М1 относительно данного центра О.
Слайд 6

Центральная симметрия – отображение пространства на себе, при котором любая точка М переходит в симметричную ей точку М1 относительно данного центра О.

Фигуры, обладающие Центральной симметрией
Слайд 9

Фигуры, обладающие Центральной симметрией

Ст. метро Сокол
Слайд 10

Ст. метро Сокол

Ст. метро Римская
Слайд 11

Ст. метро Римская

Павильон Культура, ВВЦ
Слайд 12

Павильон Культура, ВВЦ

.О
Слайд 13

Осевая симметрия
Слайд 14

Осевая симметрия

Осевой симметрией с осью а называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М1 относительно оси а. Осевая симметрия – это движение. а M M1
Слайд 15

Осевой симметрией с осью а называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М1 относительно оси а. Осевая симметрия – это движение.

а M M1

Х y Z О M(x;y;z) M1 (x1 ;y1;z1). Докажем, что осевая симметрия является движением. Для этого введем прямоугольную систему координат Oxyz так, чтобы ось Oz совпала с осью симметрии, и установим связь между координатами двух точек M(x;y;z) и M1(x1;y1 ;z1) симметричных относительно оси Oz. Если точка М
Слайд 16

Х y Z О M(x;y;z) M1 (x1 ;y1;z1)

Докажем, что осевая симметрия является движением. Для этого введем прямоугольную систему координат Oxyz так, чтобы ось Oz совпала с осью симметрии, и установим связь между координатами двух точек M(x;y;z) и M1(x1;y1 ;z1) симметричных относительно оси Oz. Если точка М не лежит на оси Oz, то ось Oz:

1) проходит через середину отрезка MM1 и 2) перпендикулярна к нему. Из первого условия по формулам для координат середины отрезка получаем (x+x1)/2=0 и (y+y1)/2=0, откуда x1=-x и y1=-z. Второе условие означает, что аппликаты точек M и M1 равны: z1=z.

Доказательство

Рассмотрим теперь любые две точки A(x1; y1; z1) и B(x2;y2;z2) и докажем, что расстояние между симметричными им точками A1 и B1 равно AB. Точки A1 и B1 имеют координаты A1(-x1;-y1;-z1) и B1(-x1;-y1;-z1) По формуле расстояния между двумя точками находим: AB=\/(x2-x1)²+(y2-y1)²+(z2-z1), A1B1=\/(-x2+x1)
Слайд 17

Рассмотрим теперь любые две точки A(x1; y1; z1) и B(x2;y2;z2) и докажем, что расстояние между симметричными им точками A1 и B1 равно AB. Точки A1 и B1 имеют координаты A1(-x1;-y1;-z1) и B1(-x1;-y1;-z1) По формуле расстояния между двумя точками находим: AB=\/(x2-x1)²+(y2-y1)²+(z2-z1), A1B1=\/(-x2+x1)²+(-y2+y1)²+(-z2+z1). Из этих соотношений ясно, что AB=A1B1, что и требовалось доказать.

Применение. Осевая симметрия встречается очень часто. Ее можно увидеть как в природе: листья растений или цветы, тело животных насекомых и даже человека, так и в творении самого человека: здания, автомобили, техника и многое другое.
Слайд 18

Применение

Осевая симметрия встречается очень часто. Ее можно увидеть как в природе: листья растений или цветы, тело животных насекомых и даже человека, так и в творении самого человека: здания, автомобили, техника и многое другое.

Применение осевой симметрии в жизни. Архитектурные строения
Слайд 20

Применение осевой симметрии в жизни

Архитектурные строения

Снежинки и тело человека
Слайд 21

Снежинки и тело человека

Эйфелева Башня сова
Слайд 22

Эйфелева Башня сова

Что может быть больше похоже на мою руку или мое ухо , чем их собственное отражение в зеркале ? И все же руку которую я вижу в зеркале , нельзя поставить на место настоящей руки. Эммануил Кант . Зеркальная симметрия
Слайд 23

Что может быть больше похоже на мою руку или мое ухо , чем их собственное отражение в зеркале ? И все же руку которую я вижу в зеркале , нельзя поставить на место настоящей руки. Эммануил Кант . Зеркальная симметрия

Отображение объемной фигуры, при котором каждой ее точке соответствует точка, симметричная ей относительно данной плоскости, называется отражением объемной фигуры в этой плоскости (или зеркальной симметрией).
Слайд 24

Отображение объемной фигуры, при котором каждой ее точке соответствует точка, симметричная ей относительно данной плоскости, называется отражением объемной фигуры в этой плоскости (или зеркальной симметрией).

Теорема 1. Отражение в плоскости сохраняет расстояния и, стало быть, является движением. Теорема 2. Движение, при котором все точки некоторой плоскости неподвижны, является отражением в этой плоскости или тождественным отображением. Зеркальная симметрия задается указанием одной пары соответствующих
Слайд 25

Теорема 1. Отражение в плоскости сохраняет расстояния и, стало быть, является движением. Теорема 2. Движение, при котором все точки некоторой плоскости неподвижны, является отражением в этой плоскости или тождественным отображением. Зеркальная симметрия задается указанием одной пары соответствующих точек, не лежащих в плоскости симметрии: плоскость симметрии проходит через середину отрезка, соединяющего эти точки, перпендикулярно к нему.

Докажем, что зеркальная симметрия – это движение Для этого введем прямоугольную систему координат Оxyz так, чтобы плоскость Оxy совпала с плоскостью симметрии, и установим связь между координатами двух точек М(x; y; z) и М1(x1;y1;z1), симметричных относительно плоскости Оxy. X z о
Слайд 26

Докажем, что зеркальная симметрия – это движение Для этого введем прямоугольную систему координат Оxyz так, чтобы плоскость Оxy совпала с плоскостью симметрии, и установим связь между координатами двух точек М(x; y; z) и М1(x1;y1;z1), симметричных относительно плоскости Оxy.

X z о

Если точка М не лежит в плоскости Оxy, то эта плоскость: 1) проходит через середину отрезка ММ1 и 2) перпендикулярна к нему. Из первого условия по формуле координат середины отрезка получаем (z+z1)/2=0, откуда z1=-z. Второе условие означает, что отрезок ММ1 параллелен оси Оz, и. следовательно, х1=х,
Слайд 27

Если точка М не лежит в плоскости Оxy, то эта плоскость: 1) проходит через середину отрезка ММ1 и 2) перпендикулярна к нему. Из первого условия по формуле координат середины отрезка получаем (z+z1)/2=0, откуда z1=-z. Второе условие означает, что отрезок ММ1 параллелен оси Оz, и. следовательно, х1=х, у1=у. М лежит в плоскости Oxy. Рассмотрим теперь две точки А (х1;у1;z1) и В (х2;у2;z2) и докажем, что расстояние между симметричными им точками А1(х1;у1;-z1) и В (х2;у2;-z2). По формуле расстояния между двумя точками находим: АВ= корень квадратный из (х2-х1)2+(у2-у1)2+(z2-z1)2, А1В1=корень квадратный из (х2-х1)2+(у2-у1)2+(-z2-z1)2. Из этих соотношений ясно, что и требовалось доказать.

Симметрия относительно плоскости (зеркальная симметрия) пространства есть движение, а значит, обладает всеми свойствами движений: переводит прямую в прямую, плоскость --- в плоскость. Кроме того, это преобразование пространства, совпадающее со своим обратным: композиция двух симметрий относительно о
Слайд 28

Симметрия относительно плоскости (зеркальная симметрия) пространства есть движение, а значит, обладает всеми свойствами движений: переводит прямую в прямую, плоскость --- в плоскость. Кроме того, это преобразование пространства, совпадающее со своим обратным: композиция двух симметрий относительно одной и той же плоскости есть тождественное преобразование. При симметрии относительно плоскости все точки этой плоскости, и только они, остаются на месте (неподвижные точки преобразования). Прямые, лежащие в плоскости симметрии и перпендикулярные ей, переходят в себя. Плоскости, перпендикулярные плоскости симметрии также переходят в себя. Симметрия относительно плоскости является движением второго рода (меняет ориентацию тетраэдра).

Шар симметричен относительно любой оси, проходящей через его центр.
Слайд 29

Шар симметричен относительно любой оси, проходящей через его центр.

Прямой круговой цилиндр симметричен относительно любой плоскости, проходящей через его ось.
Слайд 30

Прямой круговой цилиндр симметричен относительно любой плоскости, проходящей через его ось.

Правильная n-угольная пирамида при четном n симметрична относительно любой плоскости, проходящей через ее высоту и наибольшую диагональ основания.
Слайд 31

Правильная n-угольная пирамида при четном n симметрична относительно любой плоскости, проходящей через ее высоту и наибольшую диагональ основания.

Обычно считают ,что наблюдаемый в зеркале двойник является точной копией самого объекта. В действительности это не совсем так . Зеркало не просто копирует объект , а меняет местами (переставляет) передние и задние по отношению к зеркалу части объекта . В сравнении с самим объектом его зеркальный дво
Слайд 32

Обычно считают ,что наблюдаемый в зеркале двойник является точной копией самого объекта. В действительности это не совсем так . Зеркало не просто копирует объект , а меняет местами (переставляет) передние и задние по отношению к зеркалу части объекта . В сравнении с самим объектом его зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала .Этот эффект хорошо виден на одном рисунке и фактически незаметен на другом .

Предположим ,что одна половина объекта является зеркальным двойником по отношению к другой его половине . Такой объект называют зеркально симметричным .Он преобразуется сам в себя при отражении в соответствующей зеркальной плоскости . Эту плоскость называют плоскостью симметрии .
Слайд 33

Предположим ,что одна половина объекта является зеркальным двойником по отношению к другой его половине . Такой объект называют зеркально симметричным .Он преобразуется сам в себя при отражении в соответствующей зеркальной плоскости . Эту плоскость называют плоскостью симметрии .

Здание ЕНУ им. Л.Н Гумилева
Слайд 34

Здание ЕНУ им. Л.Н Гумилева

Параллельный перенос
Слайд 35

Параллельный перенос

Движение плоскости. Движение плоскости – это взаимно однозначное преобразование точек плоскости при котором сохраняются расстояния: если точка А переходит в А`, В – В`, то А`В`=АВ При движении так же сохраняются углы Параллельный перенос – это отображение пространства на себя, при котором любая точк
Слайд 36

Движение плоскости

Движение плоскости – это взаимно однозначное преобразование точек плоскости при котором сохраняются расстояния: если точка А переходит в А`, В – В`, то А`В`=АВ При движении так же сохраняются углы Параллельный перенос – это отображение пространства на себя, при котором любая точка М переходит в точку М’, что MM’ = р

p M’

Мы так же можем увидеть «параллельный перенос в повседневной жизни. Мы видим эти мелочи повсюду, но вряд ли кто-то из нас задумывался об этом. Дизайн в квартирах иногда выполняют в стиле «параллели». А В А’ В’
Слайд 38

Мы так же можем увидеть «параллельный перенос в повседневной жизни. Мы видим эти мелочи повсюду, но вряд ли кто-то из нас задумывался об этом. Дизайн в квартирах иногда выполняют в стиле «параллели».

А В А’ В’

ПОВЕРХНОСТИ ПАРАЛЛЕЛЬНОГО ПЕРЕНОСА. Поверхностью параллельного переноса называется поверхность, образованная поступательным плоскопараллельным перемещением образующей - плоской кривой линии m по криволинейной направляющей n
Слайд 39

ПОВЕРХНОСТИ ПАРАЛЛЕЛЬНОГО ПЕРЕНОСА

Поверхностью параллельного переноса называется поверхность, образованная поступательным плоскопараллельным перемещением образующей - плоской кривой линии m по криволинейной направляющей n

Наглядным примером плоскости параллельного переноса может служить скользящая опалубка, применяемая в строительстве. A’ B’ C’ D’
Слайд 40

Наглядным примером плоскости параллельного переноса может служить скользящая опалубка, применяемая в строительстве.

A’ B’ C’ D’

Спасибо за урок
Слайд 46

Спасибо за урок

Список похожих презентаций

«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
Алгебраические поверхности в пространстве

Алгебраические поверхности в пространстве

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Алгебраические поверхности второго порядка в пространстве» Задачи: Рассмотреть понятие ...
"Векторы в пространстве"

"Векторы в пространстве"

Векторы в пространстве. Тема урока:. ТАБЛИЦА «Векторы в пространстве». ФИЗИКА. Направление движения тела. ЭЛЕКТРОТЕХНИКА. Движение заряженных частиц ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

Самостоятельная работа. Вариант I Вариант II. Выполнить действия в двоичной системе счисления:. 1) 101012 + 1012 2) 101012 + 10102 3) 1000012 – 1102 ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
Алгебра в 9 классе.

Алгебра в 9 классе.

Функция их свойства и графики. Сформулируйте определение чётной функции, определение нечётной функции. Не является ни чётной, ни нечётной. чётная ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...

Конспекты

Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:20 сентября 2018
Категория:Математика
Содержит:46 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации