- Тетраэдр. Параллелепипед

Презентация "Тетраэдр. Параллелепипед" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37

Презентацию на тему "Тетраэдр. Параллелепипед" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 37 слайд(ов).

Слайды презентации

МОУ СОШ №10 г. Красногорска, учитель математики Трапезникова Н.К. Далее. Тетраэдр. Параллелепипед. Задачи на построение сечений.
Слайд 1

МОУ СОШ №10 г. Красногорска, учитель математики Трапезникова Н.К.

Далее

Тетраэдр. Параллелепипед.

Задачи на построение сечений.

Тетраэдр. Рассмотрим произвольный треугольник АВС и точку D, не лежащую в плоскости этого треугольника. Содержание
Слайд 2

Тетраэдр

Рассмотрим произвольный треугольник АВС и точку D, не лежащую в плоскости этого треугольника.

Содержание

Соединив точку D отрезками с вершинами треугольника АВС, получим треугольники DАВ, DВС и DСА.
Слайд 3

Соединив точку D отрезками с вершинами треугольника АВС, получим треугольники DАВ, DВС и DСА.

Определения. Поверхность, составленная из четырёх треугольников АВС, DАВ, DВС и DСА, называется тетраэдром и обозначается так: DАВС. Треугольники, из которых состоит тетраэдр, называются гранями, их стороны - рёбрами, а вершины - вершинами тетраэдра.
Слайд 4

Определения.

Поверхность, составленная из четырёх треугольников АВС, DАВ, DВС и DСА, называется тетраэдром и обозначается так: DАВС. Треугольники, из которых состоит тетраэдр, называются гранями, их стороны - рёбрами, а вершины - вершинами тетраэдра.

Тетраэдр имеет четыре грани, шесть рёбер и четыре вершины. Два ребра тетраэдра, не имеющие общих вершин, называются противоположными. На рисунке противоположными являются рёбра АD и ВС, ВD и АС, СD и АВ. Иногда выделяют одну из граней тетраэдра и называют её основанием, а три другие - боковыми граня
Слайд 5

Тетраэдр имеет четыре грани, шесть рёбер и четыре вершины. Два ребра тетраэдра, не имеющие общих вершин, называются противоположными. На рисунке противоположными являются рёбра АD и ВС, ВD и АС, СD и АВ. Иногда выделяют одну из граней тетраэдра и называют её основанием, а три другие - боковыми гранями.

Определения

Тетраэдр изображается обычно так, как показано на рисунках 34 и 35, т.е. в виде выпуклого или невыпуклого четырёхугольника с диагоналями. При этом штриховыми линиями изображаются невидимые рёбра. На рисунке 34 невидимым является только ребро АС, а на рисунке 35 - рёбра EK, KF и KL. Рис.34. Рис.35.
Слайд 6

Тетраэдр изображается обычно так, как показано на рисунках 34 и 35, т.е. в виде выпуклого или невыпуклого четырёхугольника с диагоналями. При этом штриховыми линиями изображаются невидимые рёбра. На рисунке 34 невидимым является только ребро АС, а на рисунке 35 - рёбра EK, KF и KL.

Рис.34. Рис.35.

Рассмотрим два равных параллелограмма АВСD и А1В1С1D1, расположенных в параллельных плоскостях так, что отрезки АА1, ВВ1, СС1, DD1 параллельны. Параллелепипед.
Слайд 7

Рассмотрим два равных параллелограмма АВСD и А1В1С1D1, расположенных в параллельных плоскостях так, что отрезки АА1, ВВ1, СС1, DD1 параллельны.

Параллелепипед.

Параллелепипед. Задачи на построение сечений. Выход
Слайд 8

Параллелепипед

Задачи на построение сечений

Выход

Четырёхугольники АВВ1А1, ВСС1В1, СDD1C1, DAA1D1 также являются параллелограммами, т.к. каждый из них имеет попарно параллельные противоположные стороны (в четырёхугольнике АВВ1А1 стороны АА1 и ВВ1 параллельны по условию, а стороны АВ и А1В1 - по свойству линий пересечения двух параллельных плоскосте
Слайд 9

Четырёхугольники АВВ1А1, ВСС1В1, СDD1C1, DAA1D1 также являются параллелограммами, т.к. каждый из них имеет попарно параллельные противоположные стороны (в четырёхугольнике АВВ1А1 стороны АА1 и ВВ1 параллельны по условию, а стороны АВ и А1В1 - по свойству линий пересечения двух параллельных плоскостей третьей.

А В D С А1 В1 C1 D1

Поверхность, составленная из двух равных параллелограммов ABCD и A1B1C1D1 и четырёх параллелограммов, называется параллелепипедом и обозначается так: ABCDA1B1C1D1. Параллелограммы, из которых составлен параллелепипед, называются гранями, их стороны - рёбрами, а вершины параллелограммов - вершинами п
Слайд 10

Поверхность, составленная из двух равных параллелограммов ABCD и A1B1C1D1 и четырёх параллелограммов, называется параллелепипедом и обозначается так: ABCDA1B1C1D1. Параллелограммы, из которых составлен параллелепипед, называются гранями, их стороны - рёбрами, а вершины параллелограммов - вершинами параллелепипеда.

Параллелепипед имеет шесть граней, двенадцать рёбер и восемь вершин. Две грани параллелепипеда, имеющие общее ребро, называются смежными, а не имеющие общих рёбер - противоположными.
Слайд 11

Параллелепипед имеет шесть граней, двенадцать рёбер и восемь вершин. Две грани параллелепипеда, имеющие общее ребро, называются смежными, а не имеющие общих рёбер - противоположными.

На рисунке противоположными являются грани ABCD и A1B1C1D1, ABB1A1 и DCC1D1, ADD1A1 и BCC1B1. Две вершины, не принадлежащие одной грани, называются противоположными.
Слайд 12

На рисунке противоположными являются грани ABCD и A1B1C1D1, ABB1A1 и DCC1D1, ADD1A1 и BCC1B1. Две вершины, не принадлежащие одной грани, называются противоположными.

Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Каждый параллелепипед имеет четыре диагонали. На рисунке диагоналями являются отрезки AC1, BD1, CA1 и DB1.
Слайд 13

Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Каждый параллелепипед имеет четыре диагонали. На рисунке диагоналями являются отрезки AC1, BD1, CA1 и DB1.

Часто выделяют какие-нибудь две противоположные грани и называют их основаниями, а остальные грани - боковыми гранями параллелепипеда. Рёбра параллелепипеда, не принадлежащие основаниям, называются боковыми рёбрами. Если выбрать грани ABCD и A1B1C1D1, то боковыми гранями будут параллелограммы, а бок
Слайд 14

Часто выделяют какие-нибудь две противоположные грани и называют их основаниями, а остальные грани - боковыми гранями параллелепипеда. Рёбра параллелепипеда, не принадлежащие основаниям, называются боковыми рёбрами. Если выбрать грани ABCD и A1B1C1D1, то боковыми гранями будут параллелограммы, а боковыми рёбрами - отрезки AA1, BB1, CC1 и DD1.

1.Противоположные грани параллелепипеда параллельны и равны. Докажем, параллельность и равенство граней ABB1A1 и DCC1D1 параллелепипеда ABCDA1B1C1D1. В содержание. Свойства параллелепипеда
Слайд 15

1.Противоположные грани параллелепипеда параллельны и равны. Докажем, параллельность и равенство граней ABB1A1 и DCC1D1 параллелепипеда ABCDA1B1C1D1.

В содержание

Свойства параллелепипеда

Доказательство. Т.к. ABCD и ADD1A1 - параллелограммы, то AB II DC и AA1 II DD1. Таким образом, две пересекающиеся прямые AB и AA1 одной грани соответственно параллельны двум прямым CD и DD1 другой грани. Отсюда по признаку параллельности плоскостей следует, что грани ABB1A1 и DCC1D1 параллельны.
Слайд 16

Доказательство.

Т.к. ABCD и ADD1A1 - параллелограммы, то AB II DC и AA1 II DD1. Таким образом, две пересекающиеся прямые AB и AA1 одной грани соответственно параллельны двум прямым CD и DD1 другой грани. Отсюда по признаку параллельности плоскостей следует, что грани ABB1A1 и DCC1D1 параллельны.

Докажем теперь равенство этих граней. Т.к. все грани параллелепипеда - параллелограммы, то AB=DC и AA1=DD1. По этой же причине стороны углов A1AB и D1DC соответственно сонаправлены, и, значит, эти углы равны. Таким образом, две смежные стороны и угол между ними параллелограмма ABB1A1 соответственно
Слайд 17

Докажем теперь равенство этих граней. Т.к. все грани параллелепипеда - параллелограммы, то AB=DC и AA1=DD1. По этой же причине стороны углов A1AB и D1DC соответственно сонаправлены, и, значит, эти углы равны. Таким образом, две смежные стороны и угол между ними параллелограмма ABB1A1 соответственно равны двум смежным сторонам и углу между ними параллелограмма DCC1D1, поэтому эти параллелограммы равны.

2.Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Рассмотрим четырёхугольник A1D1CB, диагонали которого A1C и D1B являются диагоналями параллелепипеда ABCDA1B1C1D1. Т.к. A1D1 II BC и A1D1=BC, то A1D1CB - параллелограмм. Поэтому диагонали A1C и D1B пересекаются в н
Слайд 18

2.Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Рассмотрим четырёхугольник A1D1CB, диагонали которого A1C и D1B являются диагоналями параллелепипеда ABCDA1B1C1D1. Т.к. A1D1 II BC и A1D1=BC, то A1D1CB - параллелограмм. Поэтому диагонали A1C и D1B пересекаются в некоторой точке О и этой точкой делятся пополам.

Пример №1

Рассмотрим четырёхугольник AD1C1B. Он также является параллелограммом, и, следовательно, его диагонали AC1 и D1B пересекаются и точкой пересечения делятся пополам. Но серединой диагонали D1B является точка O. Таким образом, диагонали A1C, D1B и AC1 пересекаются в точке О и делятся этой точкой попола
Слайд 19

Рассмотрим четырёхугольник AD1C1B. Он также является параллелограммом, и, следовательно, его диагонали AC1 и D1B пересекаются и точкой пересечения делятся пополам. Но серединой диагонали D1B является точка O. Таким образом, диагонали A1C, D1B и AC1 пересекаются в точке О и делятся этой точкой пополам.

Пример №2

Рассматривая четырёхугольник A1B1CD, точно так же устанавливаем, что и четвёртая диагональ DB1 параллелепипеда проходит через точку О и делится ею пополам. Пример №3
Слайд 20

Рассматривая четырёхугольник A1B1CD, точно так же устанавливаем, что и четвёртая диагональ DB1 параллелепипеда проходит через точку О и делится ею пополам.

Пример №3

Секущей плоскостью тетраэдра называется любая плоскость, по обе стороны от которой имеются точки данного тетраэдра (параллелепипеда). Секущая плоскость пересекает грани тетраэдра по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением тетраэдра (параллелепипеда).
Слайд 21

Секущей плоскостью тетраэдра называется любая плоскость, по обе стороны от которой имеются точки данного тетраэдра (параллелепипеда). Секущая плоскость пересекает грани тетраэдра по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением тетраэдра (параллелепипеда).

Т.к. тетраэдр имеет четыре грани, то его сечениями могут быть только треугольники и четырёхугольники.
Слайд 22

Т.к. тетраэдр имеет четыре грани, то его сечениями могут быть только треугольники и четырёхугольники.

Параллелепипед имеет шесть граней. Его сечениями могут быть треугольники, четырёхугольники (рис.39,а), пятиугольники (рис.39,б) и шестиугольники (рис.39,в). Рис.39. а) б) в)
Слайд 23

Параллелепипед имеет шесть граней. Его сечениями могут быть треугольники, четырёхугольники (рис.39,а), пятиугольники (рис.39,б) и шестиугольники (рис.39,в).

Рис.39. а) б) в)

На рисунке 39,б секущая плоскость пересекает две противоположные грани ( левую и правую) по отрезкам AB и CD, а две другие противоположные грани ( переднюю и заднюю) - по отрезкам AE и BC, поэтому AB II CD и AE II BC.
Слайд 24

На рисунке 39,б секущая плоскость пересекает две противоположные грани ( левую и правую) по отрезкам AB и CD, а две другие противоположные грани ( переднюю и заднюю) - по отрезкам AE и BC, поэтому AB II CD и AE II BC.

По той же причине на рисунке 39,в AB II ED, AF II CD, BC II EF. Для построения сечения достаточно построить точки пересечения секущей плоскости с рёбрами тетраэдра(параллелепипеда), после чего остаётся провести отрезки, соединяющие каждые две построенные точки, лежащие в одной и той же грани.
Слайд 25

По той же причине на рисунке 39,в AB II ED, AF II CD, BC II EF. Для построения сечения достаточно построить точки пересечения секущей плоскости с рёбрами тетраэдра(параллелепипеда), после чего остаётся провести отрезки, соединяющие каждые две построенные точки, лежащие в одной и той же грани.

Задача1. На рёбрах AB, BD и CD тетраэдра ABCD отмечены точки M,N и P. Построить сечение тетраэдра плоскостью MNP. Примеры построения сечений
Слайд 26

Задача1. На рёбрах AB, BD и CD тетраэдра ABCD отмечены точки M,N и P. Построить сечение тетраэдра плоскостью MNP.

Примеры построения сечений

Решение. Построим сначала прямую, по которой плоскость MNP пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения ещё одной общей точки продолжим отрезки NP и BC до их пересечения в точке Е, которая и будет второй общей точкой плоскостей MNP и ABC.
Слайд 27

Решение. Построим сначала прямую, по которой плоскость MNP пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения ещё одной общей точки продолжим отрезки NP и BC до их пересечения в точке Е, которая и будет второй общей точкой плоскостей MNP и ABC.

Следовательно, эти плоскости пересекаются по прямой ME. Прямая ME пересекает ребро AC в некоторой точке Q. Четырёхугольник MNPQ - искомое сечение.
Слайд 28

Следовательно, эти плоскости пересекаются по прямой ME. Прямая ME пересекает ребро AC в некоторой точке Q. Четырёхугольник MNPQ - искомое сечение.

Если прямые NP и BC параллельны, то прямая NP параллельна грани ABC, поэтому плоскость MNP пересекает эту грань по прямой ML, параллельной прямой NP. Точка Q, как и в первом случае, есть точка пересечения ребра AC с прямой ML.
Слайд 29

Если прямые NP и BC параллельны, то прямая NP параллельна грани ABC, поэтому плоскость MNP пересекает эту грань по прямой ML, параллельной прямой NP. Точка Q, как и в первом случае, есть точка пересечения ребра AC с прямой ML.

Точка М лежит на боковой грани ADB тетраэдра DABC. Построить сечение тетраэдра плоскостью, проходящей через точку М параллельно основанию ABC. Задача №2
Слайд 30

Точка М лежит на боковой грани ADB тетраэдра DABC. Построить сечение тетраэдра плоскостью, проходящей через точку М параллельно основанию ABC.

Задача №2

Решение. Т.к. секущая плоскость параллельна плоскости ABC, то она параллельна прямым AB, BC и CA. Следовательно, секущая плоскость пересекает боковые грани тетраэдра по прямым, параллельным сторонам треугольника ABC. Отсюда вытекает следующий способ построения искомого сечения. Проведём через точку
Слайд 31

Решение. Т.к. секущая плоскость параллельна плоскости ABC, то она параллельна прямым AB, BC и CA. Следовательно, секущая плоскость пересекает боковые грани тетраэдра по прямым, параллельным сторонам треугольника ABC. Отсюда вытекает следующий способ построения искомого сечения. Проведём через точку М прямую, параллельную отрезку AB.

Обозначим буквами P и Q точки пересечения этой прямой с боковыми рёбрами DA и DB. Затем через точку P проведём прямую, параллельную отрезку AC, и обозначим буквой R точку пересечения этой прямой с ребром DC. Треугольник PQR - искомое сечение.
Слайд 32

Обозначим буквами P и Q точки пересечения этой прямой с боковыми рёбрами DA и DB. Затем через точку P проведём прямую, параллельную отрезку AC, и обозначим буквой R точку пересечения этой прямой с ребром DC. Треугольник PQR - искомое сечение.

На рёбрах параллелепипеда даны три точки A, B и C. Построить сечение параллелепипеда плоскостью ABC. Задача №3
Слайд 33

На рёбрах параллелепипеда даны три точки A, B и C. Построить сечение параллелепипеда плоскостью ABC.

Задача №3

Решение. Построение искомого сечения зависит от того, на каких рёбрах параллелепипеда лежат точки A, B и C. Когда эти точки лежат на рёбрах, выходящих из одной вершины, нужно провести отрезки AB, BC и CA, и получится искомое сечение - треугольник ABC.
Слайд 34

Решение. Построение искомого сечения зависит от того, на каких рёбрах параллелепипеда лежат точки A, B и C. Когда эти точки лежат на рёбрах, выходящих из одной вершины, нужно провести отрезки AB, BC и CA, и получится искомое сечение - треугольник ABC.

Если три данные точки A, B и C расположены так, как показано на рисунке, то сначала нужно провести отрезки AB и BC, а затем через точку A провести прямую, параллельную BC, а через точку C - прямую, параллельную AB. Пересечения этих прямых с рёбрами нижней грани дают точки E и D. Остаётся провести от
Слайд 35

Если три данные точки A, B и C расположены так, как показано на рисунке, то сначала нужно провести отрезки AB и BC, а затем через точку A провести прямую, параллельную BC, а через точку C - прямую, параллельную AB. Пересечения этих прямых с рёбрами нижней грани дают точки E и D. Остаётся провести отрезок ED, и искомое сечение - пятиугольник ABCDE - построено.

Более трудный случай, когда данные точки A, B C расположены так, как показано на рисунке. В этом случае сначала построим прямую, по которой секущая плоскость пересекается с плоскостью нижнего основания. Для этого проведём прямую AB, до пересечения с этой прямой в точке M. Далее через точку M проведё
Слайд 36

Более трудный случай, когда данные точки A, B C расположены так, как показано на рисунке. В этом случае сначала построим прямую, по которой секущая плоскость пересекается с плоскостью нижнего основания. Для этого проведём прямую AB, до пересечения с этой прямой в точке M. Далее через точку M проведём прямую, параллельную прямой BC. Это и есть прямая, по которой секущая плоскость пересекается с плоскостью нижнего основания.

Эта прямая пересекается с рёбрами нижнего основания в точках E и F. Затем через точку E проведём прямую, параллельную прямой AB, и получим точку D. Проводим отрезки AF и CD, и искомое сечение - шестиугольник ABCDEF - построено.
Слайд 37

Эта прямая пересекается с рёбрами нижнего основания в точках E и F. Затем через точку E проведём прямую, параллельную прямой AB, и получим точку D. Проводим отрезки AF и CD, и искомое сечение - шестиугольник ABCDEF - построено.

Список похожих презентаций

Тетраэдр и Параллелепипед

Тетраэдр и Параллелепипед

Содержание:. 1)Титульный лист 2)Определение тетраэдра и его свойства 3)Построение тетраэдра 4)Формула объема тетраэдра 5)Определение параллелепипеда ...
Тетраэдр и параллелепипед

Тетраэдр и параллелепипед

Свойства параллелепипеда. 1.Противоположные грани параллельны и равны. Диагонали пересекаются и делятся точкой пересечения пополам. С В А D А1 В 1 ...
Тетраэдр и его сечения

Тетраэдр и его сечения

Домашнее задание. Изучить п.12, п.14 Решить задачи №24; №27; №28; №30 из рабочей тетради. Решить № 67(б) из учебника. Многоугольник. Определение тетраэдра. ...
Тетраэдр

Тетраэдр

Сегодня мы познакомимся с ТЕТРАЭДРОМ. Прежде чем ввести понятие тетраэдра, вспомним, что мы понимали под многоугольником в планиметрии. Многоугольник ...
Тетраэдр

Тетраэдр

ВСПОМНИМ. Какую фигуру в планиметрии мы называли многоугольником? A B C D. . ТЕТРА ЭДР. ПОВЕРХНОСТЬ, СОСТАВЛЕННАЯ ИЗ ЧЕТЫРЕХ ТЕРУГОЛЬНИКОВ. ГРАНИ. ...
Перпендикулярность плоскостей Параллелепипед

Перпендикулярность плоскостей Параллелепипед

Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 900. Примером взаимно перпендикулярных ...
Тетраэдр

Тетраэдр

Определение. Тетраэдр (четырёхгранник)—многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра ...
Параллелепипед

Параллелепипед

Текст надписи. Параллелепи́пед (от греч. παράλλος — параллельный и греч. επιπεδον — плоскость) — призма, основанием которой служит параллелограмм, ...
Параллелепипед и его объем

Параллелепипед и его объем

Для начала введем одно важное понятие: Призма, все грани которой являются параллелограммами, называется параллелепипедом. Окружающие нас предметы ...
Параллелепипед

Параллелепипед

Параллелепипед – четырёхугольная призма, основаниями которой являются параллелограммы. Прямой параллелепипед, т.е. его боковые рёбра перпендикуляр-ны ...
Параллелепипед

Параллелепипед

Параллелепипед – шестигранник, противоположные грани которого попарно параллельны. Параллелепипед имеет: 8 вершин 12 рёбер 6 граней. Определение Вершина ...
Параллелепипед

Параллелепипед

Параллелепипед. Параллелепипед – это призма, основанием которой является параллелограмм. Элементы параллелепипеда. Ребро основания Нижнее основание. ...
Параллелепипед

Параллелепипед

Прямоугольный параллелепипед. Спичечный коробок, деревянный брусок, кирпич дают представление о прямоугольном параллелепипеде. Поверхность прямоугольного ...
Параллелепипед

Параллелепипед

Параллелепи́пед. Параллелепи́пед (от греч. παράλλος — параллельный и греч. επιπεδον — плоскость) — призма, основанием которой служит параллелограмм, ...
Тетраэдр, виды сечений и решение задач по тетраэдру

Тетраэдр, виды сечений и решение задач по тетраэдру

Цель работы:. Выяснить какие виды сечений тетраэдра существуют Терминология Показать на примерах решения задач тетраэдра. Терминология:. Тетраэдр ...
Параллелепипед

Параллелепипед

Параллелепипед- четырехугольная призма, основаниями которой являются параллелограммы. Все шесть граней параллелепипеда- параллелограммы. Ребра (12) ...
Параллелепипед

Параллелепипед

Прямоугольный параллелепипед. Параллелепипед. A B C D. 1. ABCD, A1B1C1D1, AA1D1D, … 2. A, AB, AC, AA1, B, BC, BB1, …. A1 B1 C1 D1. Смежные грани. ...
Страна геометрия

Страна геометрия

Правительство. Отдел планирования. Отдел проектирования. Район археологических раскопок. Юбилей Первые поселения. Силурийский период. Средневековье ...
Простая геометрия в архитектуре различных эпох и культур

Простая геометрия в архитектуре различных эпох и культур

Архитектура. Уже в XII в. архитектура понимается уже как наука, как знание, как геометрия, имеющая практическое приложение, как деятельность, требующая ...
Пчелы и геометрия

Пчелы и геометрия

Внеклассное мероприятие «пчелы и геометрия». В природе все продумано и совершенно. Индийская пчела Украинская пчела. Австралийская пчела. Пчела - ...

Конспекты

Параллелепипед и его свойства

Параллелепипед и его свойства

Конспект урока по геометрии для учащихся 10 класса средней общеобразовательной школы. Тема урока:. «. Параллелепипед и его свойства». Цель ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:27 апреля 2019
Категория:Математика
Содержит:37 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации