Презентация "Математика и музыка" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26

Презентацию на тему "Математика и музыка" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 26 слайд(ов).

Слайды презентации

Работу выполнила: Клементьевская Марина Валентиновна МОУ «Общеобразовательная гимназия №3», г.Архангельск Научный руководитель: Косарева Галина Николаевна, учитель математики ВКК, зав. кафедрой физики-математики, Почётный работник общего образования РФ. Фестиваль исследовательских и творческих работ
Слайд 1

Работу выполнила: Клементьевская Марина Валентиновна МОУ «Общеобразовательная гимназия №3», г.Архангельск Научный руководитель: Косарева Галина Николаевна, учитель математики ВКК, зав. кафедрой физики-математики, Почётный работник общего образования РФ

Фестиваль исследовательских и творческих работ учащихся «Портфолио»

Математика — самая абстрактная из наук, а музыка — наиболее отвлеченное из искусств, это высшие выразители науки и искусства. Волошинов А.
Слайд 2

Математика — самая абстрактная из наук, а музыка — наиболее отвлеченное из искусств, это высшие выразители науки и искусства. Волошинов А.

Цель работы: провести параллель между математикой и музыкой. Задачи: 1) познакомиться с пифагорейским учением о связи между математикой и музыкой; 2) разобрать основные правила консонанса и доказать их математическую природу; 3) в ходе исследования проверить, действуют ли пифагорейские правила консо
Слайд 3

Цель работы: провести параллель между математикой и музыкой. Задачи: 1) познакомиться с пифагорейским учением о связи между математикой и музыкой; 2) разобрать основные правила консонанса и доказать их математическую природу; 3) в ходе исследования проверить, действуют ли пифагорейские правила консонанса до сих пор; 4) доказать благотворное влияние изучения музыки на математические способности и наоборот. Методы исследования: 1) поиск, анализ и синтез различных источников информации: книг, статей, Интернет-ресурсов; 2) математический анализ музыкальных аккордов; 3) анкетирование.

Актуальность темы состоит в том, что многие не понимают, что математика и музыка родственны. Родители не принимают во внимание тот факт, что музыкальное образование развивает способности к математике. Учитывая, что математика становится всё более популярным, но остаётся при этом не менее сложным пре
Слайд 4

Актуальность темы состоит в том, что многие не понимают, что математика и музыка родственны. Родители не принимают во внимание тот факт, что музыкальное образование развивает способности к математике. Учитывая, что математика становится всё более популярным, но остаётся при этом не менее сложным предметом, ценность музыки и музыкального образования как вспомогательного должна повышаться.

Музыка, математика – сколь родственны они. Имре Мадач (венгерский писатель)
Слайд 5

Музыка, математика – сколь родственны они. Имре Мадач (венгерский писатель)

Пифагор — едва ли не самый популярный ученый не только в античности, но и в наши дни.
Слайд 6

Пифагор — едва ли не самый популярный ученый не только в античности, но и в наши дни.

Заслуги пифагора. Пифагор учил математике, музыке, астрономии, медицине, принципам политической деятельности, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Числа, равные сумме своих делителей, воспринимались как совер
Слайд 7

Заслуги пифагора

Пифагор учил математике, музыке, астрономии, медицине, принципам политической деятельности, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Числа, равные сумме своих делителей, воспринимались как совершенные; дружественными называли пары чисел, из которых каждое равнялось сумме делителей другого. Пифагор впервые разделил числа на четные и нечетные, простые и составные, ввел понятие фигурного числа. В его школе были подробно рассмотрены тройки натуральных чисел, у которых квадрат одного равнялся сумме квадратов двух других. Геометрия у Пифагора была подчинена арифметике. Это ярко проявилось в теореме, носящей его имя и ставшей в дальнейшем основой применения численных методов геометрии. Пифагору приписывают систематическое введение доказательств в геометрию, создание планиметрии прямолинейных фигур, учение о подобии. Пифагор одним из первых считал, что Земля имеет форму шара и является центром Вселенной.

В математике, в познании количественных отношений, видели пифагорейцы ключ к разгадке мировой гармонии, постижение которой и составляло смысл их жизни.
Слайд 8

В математике, в познании количественных отношений, видели пифагорейцы ключ к разгадке мировой гармонии, постижение которой и составляло смысл их жизни.

Отправным пунктом в пифагорейском учении о числе была музыка. Именно в музыке была впервые обнаружена таинственная направляющая роль чисел в природе. По преданию, сам Пифагор установил, что приятные слуху созвучия получаются лишь в том случае, когда длины струн, издающих эти звуки, относятся как цел
Слайд 9

Отправным пунктом в пифагорейском учении о числе была музыка. Именно в музыке была впервые обнаружена таинственная направляющая роль чисел в природе. По преданию, сам Пифагор установил, что приятные слуху созвучия получаются лишь в том случае, когда длины струн, издающих эти звуки, относятся как целые числа первой четверки: 1:2, 2:3, 3:4. Это открытие потрясло Пифагора и долго вдохновляло его учеников на поиски новых числовых закономерностей в природе.

С этого времени музыка, точнее теория музыки или учение о гармонии, занимает почетное место в пифагорейской системе знаний. «Музыкантов»-пифагорейцев интересовало не столько музыкальное искусство, сколько те математические пропорции и соотношения, которые, как считалось, лежат в основе музыки. Идея
Слайд 10

С этого времени музыка, точнее теория музыки или учение о гармонии, занимает почетное место в пифагорейской системе знаний. «Музыкантов»-пифагорейцев интересовало не столько музыкальное искусство, сколько те математические пропорции и соотношения, которые, как считалось, лежат в основе музыки. Идея музыкальных соотношений настолько увлекла пифагорейцев, что они пытались обнаружить их всюду.

Музыка и астрономия были сведены пифагорейцами к анализу числовых закономерностей, т. е. к арифметике и геометрии. Все четыре дисциплины стали считаться математическими и называться одним словом — «математа». Термины «наука» и «искусство» в далекие времена античности практически не различались. Пифа
Слайд 11

Музыка и астрономия были сведены пифагорейцами к анализу числовых закономерностей, т. е. к арифметике и геометрии. Все четыре дисциплины стали считаться математическими и называться одним словом — «математа». Термины «наука» и «искусство» в далекие времена античности практически не различались. Пифагорейцы называли математику и музыку родными сестрами. Музыка пронизана математикой, как и математика полна поэзии и музыки. Это прекрасно чувствовали древние греки.

Гаммой, или звукорядом, называется последовательность звуков некоторой музыкальной системы, расположенных, начиная от основного звука, в восходящем или нисходящем порядке. Важнейшей характеристикой музыкального звука является его высота, представляющая отражение в сознании частоты колебания звучащег
Слайд 12

Гаммой, или звукорядом, называется последовательность звуков некоторой музыкальной системы, расположенных, начиная от основного звука, в восходящем или нисходящем порядке. Важнейшей характеристикой музыкального звука является его высота, представляющая отражение в сознании частоты колебания звучащего тела, например струны. Чем больше частота колебаний струны, тем «выше» представляется нам звук.

Согласованное сочетание двух звуков называется консонансом, а несогласованное — диссонансом. Ладом называется приятная для слуха взаимосвязь музыкальных звуков, определяемая зависимостью неустойчивых звуков от устойчивых, и прежде всего от основного устойчивого звука — тоники, и имеющая определенный
Слайд 13

Согласованное сочетание двух звуков называется консонансом, а несогласованное — диссонансом. Ладом называется приятная для слуха взаимосвязь музыкальных звуков, определяемая зависимостью неустойчивых звуков от устойчивых, и прежде всего от основного устойчивого звука — тоники, и имеющая определенный характер звучания — наклонение.

Высота тона (частота колебаний f) звучащей струны обратно пропорциональна ее длине l. Две звучащие струны дают консонанс лишь тогда, когда их длины относятся как целые числа, составляющие треугольное число 10=1+2+3+4, т. е. как 1:2, 2:3, 3:4. Если в качестве цены деления шкалы монохорда взять отрезо
Слайд 14

Высота тона (частота колебаний f) звучащей струны обратно пропорциональна ее длине l. Две звучащие струны дают консонанс лишь тогда, когда их длины относятся как целые числа, составляющие треугольное число 10=1+2+3+4, т. е. как 1:2, 2:3, 3:4. Если в качестве цены деления шкалы монохорда взять отрезок l, равный 1/12 длины струны монохорда l1, то вместе со всей струной монохорда длины l1 = 12l будут созвучны ее части длины l2 = 6l — звук на октаву выше (l2/l1 = 1/2), l3 = 9l — звук на квинту выше (l3/l1=2/3) и l4= 8l — звук на кварту выше (l4/l1=3/4). Это созвучие и определяющие его числа 6, 8, 9, 12 назывались тетрада (четверка).

Квинта есть среднее гармоническое длин струн основного тона l1 и октавы l2, а кварта — среднее арифметическое l1 и l2. Октава есть произведение квинты на кварту. Октава так относится к квинте, как кварта к основному тону. Октава делится на два неравных консонансных интервала — квинту и кварту. Интер
Слайд 15

Квинта есть среднее гармоническое длин струн основного тона l1 и октавы l2, а кварта — среднее арифметическое l1 и l2. Октава есть произведение квинты на кварту. Октава так относится к квинте, как кварта к основному тону. Октава делится на два неравных консонансных интервала — квинту и кварту. Интервал, дополняющий данный интервал до октавы, называется его обращением.

К 1700 г. немецкий органист Андреас Веркмейстер осуществил смелое и гениально простое решение: он отказался от совершенных и несовершенных консонансов — квинт, кварт и терций, оставив в первозданной консонантной красе лишь одну октаву, и попросту разделил ее геометрически на 12 равных частей. Так в
Слайд 16

К 1700 г. немецкий органист Андреас Веркмейстер осуществил смелое и гениально простое решение: он отказался от совершенных и несовершенных консонансов — квинт, кварт и терций, оставив в первозданной консонантной красе лишь одну октаву, и попросту разделил ее геометрически на 12 равных частей. Так в музыке восторжествовала темперация (лат. соразмерность), а новый двенадцатизвуковой строй был назван равномерно-темперированным.

Вначале, разумеется, были попытки улучшить чистый строй, который сохранял главный недостаток пифагорова строя: невозможность безболезненного перехода из тональности в тональность. Естественным желанием при решении этой проблемы было увеличить количество звуков в октаве.
Слайд 17

Вначале, разумеется, были попытки улучшить чистый строй, который сохранял главный недостаток пифагорова строя: невозможность безболезненного перехода из тональности в тональность. Естественным желанием при решении этой проблемы было увеличить количество звуков в октаве.

Сейчас трудно сказать, кому первому пришла идея равномерно разделить октаву на 12 равных частей. Идея эта была подготовлена самой логикой развития музыкального строя и, как говорят в таких случаях, носилась в воздухе. Но изложение этой идеи мы находим в энциклопедическом труде Мерсенна «Универсальна
Слайд 19

Сейчас трудно сказать, кому первому пришла идея равномерно разделить октаву на 12 равных частей. Идея эта была подготовлена самой логикой развития музыкального строя и, как говорят в таких случаях, носилась в воздухе. Но изложение этой идеи мы находим в энциклопедическом труде Мерсенна «Универсальная гармония».

Конечно, и в век Просвещения новое не всеми воспринималось восторженно. Выдающийся немецкий композитор Георг Фридрих Гендель не принял новшества. Отказ от совершенных консонансов возмущал его. К счастью, равномерная темперация нашла сторонника в лице сверстника Генделя, великого немецкого композитор
Слайд 20

Конечно, и в век Просвещения новое не всеми воспринималось восторженно. Выдающийся немецкий композитор Георг Фридрих Гендель не принял новшества. Отказ от совершенных консонансов возмущал его. К счастью, равномерная темперация нашла сторонника в лице сверстника Генделя, великого немецкого композитора и органиста Иоганна Себастьяна Баха.

И все-таки является ли 12-звуковая равномерная темперация «абсолютной истиной» в музыке? Разумеется, нет! Спор Баха и Генделя продолжается. Музыкантов с особо тонким слухом раздражают «тупые» консонансы темперированного строя. Поиски новых равномерных темперации продолжаются. Разработаны 24-, 48- и
Слайд 22

И все-таки является ли 12-звуковая равномерная темперация «абсолютной истиной» в музыке? Разумеется, нет! Спор Баха и Генделя продолжается. Музыкантов с особо тонким слухом раздражают «тупые» консонансы темперированного строя. Поиски новых равномерных темперации продолжаются. Разработаны 24-, 48- и 53-звуковые равномерные темперации. На каждую из них специально написана музыка и сконструированы музыкальные инструменты. Но все они практического распространения не получили.

П.И.Чайковский А.Н.Скрябин С.Рихтер

Диаграмма выбора интервалов учащимися
Слайд 24

Диаграмма выбора интервалов учащимися

В ходе работы мы познакомились с пифагорейским учением о математике и музыке; на основе его разработали правила построения консонанса, доказали его математическую природу; с помощью исследования показали, что и сегодня пифагорейская теория консонансов может быть использована; убедились, что занятия
Слайд 25

В ходе работы мы познакомились с пифагорейским учением о математике и музыке; на основе его разработали правила построения консонанса, доказали его математическую природу; с помощью исследования показали, что и сегодня пифагорейская теория консонансов может быть использована; убедились, что занятия музыкой благотворно влияют на математические способности учащихся. Таким образом, цель работы достигнута. В нашем исследовании мы провели параллель между двумя, казалось бы несовместимыми науками: музыкой и математикой.

Список похожих презентаций

"Обыкновенные дроби" Математика

"Обыкновенные дроби" Математика

Дробь (математика) Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Дроби являются частью поля рациональных чисел. ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...

Конспекты

Веселая и полезная математика

Веселая и полезная математика

. Тюрина Валентина Викторовна. 1 квалификационная категория – учитель математики. Город Прокопьевск Кемеровская область. МКОУ «Школа – интернат ...
Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:31 марта 2019
Категория:Математика
Содержит:26 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации