- Кросс-суммы и магические квадраты

Презентация "Кросс-суммы и магические квадраты" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Кросс-суммы и магические квадраты" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

Магические квадраты. Презентация к исследовательской работе Выполнил: ученик 10 класса Кирьяков Кирилл Руководитель: Лонская Т.А., учитель математики
Слайд 1

Магические квадраты

Презентация к исследовательской работе Выполнил: ученик 10 класса Кирьяков Кирилл Руководитель: Лонская Т.А., учитель математики

Пришельцы из Китая и Индии. Одним из наиболее древних и наиболее совершенных видов кросс-сумм является так называемый магический (или волшебный) квадрат. Придуманы магические квадраты впервые, по-видимому, китайцами, так как самое ранее упоминание о них встречается в китайской книге, написанной за 4
Слайд 2

Пришельцы из Китая и Индии

Одним из наиболее древних и наиболее совершенных видов кросс-сумм является так называемый магический (или волшебный) квадрат. Придуманы магические квадраты впервые, по-видимому, китайцами, так как самое ранее упоминание о них встречается в китайской книге, написанной за 4000-5000 лет до нашей эры.

Старейший в мире магический квадрат представлен выше. Черными кружками в этом квадрате изображены четные (женственные) числа, белыми – нечетные (мужественные) числа. В обычной записи он не так эффектен:
Слайд 3

Старейший в мире магический квадрат представлен выше. Черными кружками в этом квадрате изображены четные (женственные) числа, белыми – нечетные (мужественные) числа. В обычной записи он не так эффектен:

И всё же это великолепный образец кросс-сумм! Девять порядковых чисел размещены в девяти клетках квадрата так, что суммы чисел вдоль каждой строки, каждого столбца и каждой из двух диагоналей одинаковы (основное свойство магического квадрата). Более поздние сведения о магических квадратах относящиес
Слайд 4

И всё же это великолепный образец кросс-сумм! Девять порядковых чисел размещены в девяти клетках квадрата так, что суммы чисел вдоль каждой строки, каждого столбца и каждой из двух диагоналей одинаковы (основное свойство магического квадрата). Более поздние сведения о магических квадратах относящиеся уже к 1 веку, получены из Индии. Вот один из таких древнеиндийских памятников почти 2000-летней давности:

Здесь 16 порядковых чисел размещены в шестнадцати клетках квадрата так, что выполняется основное свойство магического квадрата. Действительно:
Слайд 5

Здесь 16 порядковых чисел размещены в шестнадцати клетках квадрата так, что выполняется основное свойство магического квадрата. Действительно:

Каждое число магического квадрата участвует в двух суммах, а числа расположенные по диагоналям даже в трёх, и все эти суммы равны между собой! Недаром в ту далёкую эпоху суеверий индийцы, а следом за ними и арабы приписывали этим числовым сочетаниям таинственные и магические свойства. Вся эта своеоб
Слайд 6

Каждое число магического квадрата участвует в двух суммах, а числа расположенные по диагоналям даже в трёх, и все эти суммы равны между собой! Недаром в ту далёкую эпоху суеверий индийцы, а следом за ними и арабы приписывали этим числовым сочетаниям таинственные и магические свойства. Вся эта своеобразная мозаика чисел с её постоянством сумм действительно придаёт квадрату «волшебную» силу произведения искусства. И магические квадраты вошли в искусство. В «Фаусте» Гете есть сцена приготовления колдуньей омолаживающего зелья. Слова, которыми колдунья сопровождает свои манипуляции, обычно воспринимаются читателями «Фауста» как тарабарщина, бессмыслица:

Но не мог же Гете потерять чувство художественной меры и отдать абракадабре целых 13 строк поэтического текста! Литературные комментаторы и исследователи бесплодно тратили усилия на поиски смыcла, скрытого в этом тринадцатистишии: Очевидно, y них не возникала мысль попытаться воспроизвести на бумаге
Слайд 7

Но не мог же Гете потерять чувство художественной меры и отдать абракадабре целых 13 строк поэтического текста! Литературные комментаторы и исследователи бесплодно тратили усилия на поиски смыcла, скрытого в этом тринадцатистишии: Очевидно, y них не возникала мысль попытаться воспроизвести на бумаге рекомендации колдуньи.

Давайте это сделаем. построим квадрат из девяти ячеек и разместим в ячейках 9 первых натуральных чисел в порядке их следования. Выполним указания колдуньи: Из 1 делаешь 10 — в первой ячейке заменяем ЧИСЛО 1 числом 10. Числа 2 и 3 оставляем на своих местах, так как сказано: пропускаешь 2, a также 3. Зачеркиваешь 4 — это значит заменяем нулем число 4. Заменяем 5 и 6 числами 7 и 8, а в ячейки, занятые числами 7 и 8, вписываем 5 и 6

9 8 6 5 4 3 2 1 10 0

Колдунья говорит: «Квадрат готов», но тут она хитрит. Ей еще надо в последней ячейке квадрата заменить девятку числом 4 Вот теперь формирование «талисмана» окончено и последние три строки тринадцатистишия уже ничего не добавляют к пониманию смысла «заклинаний» колдуньи. Особенность получившегося ква
Слайд 8

Колдунья говорит: «Квадрат готов», но тут она хитрит. Ей еще надо в последней ячейке квадрата заменить девятку числом 4 Вот теперь формирование «талисмана» окончено и последние три строки тринадцатистишия уже ничего не добавляют к пониманию смысла «заклинаний» колдуньи. Особенность получившегося квадрата состоит в том, что магическая константа (15) получается только при сложении чисел вдоль любой строки и любого столбца, но не вдоль диагоналей. Квадрат с таким свойством чисел, занимающих его ячейки, принято называть полумагическим. Превращением начального квадрата в полумагический Гете символизировал процесс омoложeния Фауста.

7

Свойства магического квадрата А.Дюрера. В Европу магические квадраты проникли лишь в начале XV века. A в начале XVI века один из них был увековечен выдающимся немецким художником, гравером и немного математиком А. Дюрером в его лучшей гравюре «Меланхолия» (1514 г.). Дюрер воспроизвел на гравюре (в н
Слайд 9

Свойства магического квадрата А.Дюрера

В Европу магические квадраты проникли лишь в начале XV века. A в начале XVI века один из них был увековечен выдающимся немецким художником, гравером и немного математиком А. Дюрером в его лучшей гравюре «Меланхолия» (1514 г.). Дюрер воспроизвел на гравюре (в несколько измененном виде) тот самый магический квадрат, составленный из 16 чисел.

Очарование этого магического квадрата не только в постоянстве сумм, которое является лишь его основным свойством. Подобно тому, как в истинно художественном произведении находишь тем больше новых привлекательных сторон, чем больше в него вглядываешься, так и в этом произведении математического искусства таится немало красивых свойств, помимо основного.

Укажем еще шесть дополнительных свойств приведенного нам шестнадцатиклеточного магического квадрата: Сумма чисел, расположенных по углам нашего магического квадрата, равна 34, то есть тому же числу, что и сумма чисел вдоль каждого ряда квадрата: 16 13 11 12 15 14. Суммы чисел в каждом из маленьких к
Слайд 10

Укажем еще шесть дополнительных свойств приведенного нам шестнадцатиклеточного магического квадрата: Сумма чисел, расположенных по углам нашего магического квадрата, равна 34, то есть тому же числу, что и сумма чисел вдоль каждого ряда квадрата:

16 13 11 12 15 14

Суммы чисел в каждом из маленьких квадратов (в 4 клетки), примыкающих к вершинам данного квадрата, и в таком же центральном квадрате тоже одинаковы и каждая из них равна 34:

+ = 34

В каждой строке квадрата есть пара рядом стоящих чисел, сумма которых - 15, и еще пара тоже рядом стоящих чисел, сумма которых -19. Подсчитайте-ка теперь сумму квадратов чисел отдельно в двух крайних строках и в двух средних: 19. Как видите, получились попарно равные суммы!
Слайд 11

В каждой строке квадрата есть пара рядом стоящих чисел, сумма которых - 15, и еще пара тоже рядом стоящих чисел, сумма которых -19.

Подсчитайте-ка теперь сумму квадратов чисел отдельно в двух крайних строках и в двух средних:

19

Как видите, получились попарно равные суммы!

Нетрудно убедиться, что аналогичным свойством обладают и столбцы чисел. Суммы квадратов чисел двух крайних столбцов равны между собой, и суммы квадратов чисел двух средних столбцов тоже одинаковы. Если в данный квадрат вписать еще один квадрат с вершинами в серединах сторон данного квадрата, получим
Слайд 12

Нетрудно убедиться, что аналогичным свойством обладают и столбцы чисел. Суммы квадратов чисел двух крайних столбцов равны между собой, и суммы квадратов чисел двух средних столбцов тоже одинаковы.

Если в данный квадрат вписать еще один квадрат с вершинами в серединах сторон данного квадрата, получим то, что показано на рисунке а, выше: а) сумма чисел, расположенных вдоль одной пары противоположных сторон вписанного квадрата, равна сумме чисел, расположенных вдоль другой пары противоположных его сторон, и каждая из этих сумм равна опять-таки числу 34: 12+14+3+5 = 15+9+8+2 = 34; б) еще интереснее то, что равны между собой даже суммы квадратов и суммы кубов этих чисел:

Если все столбцы магического квадрата сделать строками, сохраняя их чередование, то есть - числа первого столбца в той же последовательности расположить в виде первой строки, числа второго столбца в виде второй строки и т.д., то квадрат останется магическим с теми же его свойствами. Суммы чисел вдол
Слайд 13

Если все столбцы магического квадрата сделать строками, сохраняя их чередование, то есть - числа первого столбца в той же последовательности расположить в виде первой строки, числа второго столбца в виде второй строки и т.д., то квадрат останется магическим с теми же его свойствами.

Суммы чисел вдоль строк и столбцов, конечно, не изменились, но суммы чисел вдоль диагоналей стали иными, не равными 34. Магический квадрат потерял часть своих основных свойств, стал «неполным» магическим квадратом (полумагическим квадратом). Продолжая обменивать местами строки и столбцы квадрата, вы будете получать все новые и новые магические и полумагические квадраты из 16 чисел.

При обмене местами отдельных строк или столбцов магического квадрата некоторые из вышеперечисленных его свойств могут исчезнуть, но могут и все сохраниться и даже появиться новые. Например, поменяем, местами первую и вторую строки данного квадрата, получим то, что показано на рисунке справа:

Как самому составить магический квадрат. Если некоторое количество порядковых чисел, например, все целые числа от 1 до 16 или от 1 до 9, или от 1 до 25, или от 1 до 100 и т д., расположены в форме квадрата так, что суммы чисел вдоль каждой строки, каждого столбца и каждой диагонали квадрата одинаков
Слайд 14

Как самому составить магический квадрат

Если некоторое количество порядковых чисел, например, все целые числа от 1 до 16 или от 1 до 9, или от 1 до 25, или от 1 до 100 и т д., расположены в форме квадрата так, что суммы чисел вдоль каждой строки, каждого столбца и каждой диагонали квадрата одинаковы, то такой квадрат, как было сказано, называется магическим, или волшебным. Количеством клеток (чисел) в каждом ряду магического квадрата определяет его порядок. Магический квадрат третьего порядка имеет в каждом ряду 3 клетки, магический квадрат четвертого порядка имеет в каждом ряду 4 клетки и т. д.

Квадраты нечетного порядка. Строим, квадрат ABCD с 25 клетками и временно дополняем его до, симметричной ступенчатой фигуры со ступеньками в одну клетку. В полученной фигуре располагаем по порядку косыми рядами сверху вниз - направо 25 целых чисел от 1до 25. А теперь каждое число, оказавшееся вне кв
Слайд 15

Квадраты нечетного порядка

Строим, квадрат ABCD с 25 клетками и временно дополняем его до, симметричной ступенчатой фигуры со ступеньками в одну клетку. В полученной фигуре располагаем по порядку косыми рядами сверху вниз - направо 25 целых чисел от 1до 25. А теперь каждое число, оказавшееся вне квадрата ABCD, следует перенести вдоль того же ряда или столбца ровно на столько клеток от той клетки, которую оно занимает, каков порядок квадрата, в нашем примере - на пять. Так, в соответствии с этим правилом переносим эти числа…

23 22 18 21 17 25 20 24 A B C D

Но у получившегося квадрата обнаруживается и дополнительное свойство: все пары чисел, расположенные симметрично относительно центральной клетки, дают одинаковые суммы. Например: 1+25=19+7=18+8=23+3= =6+20=2+24=4+22 и т. д. Магические квадраты, обладающие таким свойством, называются симметричными. =2
Слайд 16

Но у получившегося квадрата обнаруживается и дополнительное свойство: все пары чисел, расположенные симметрично относительно центральной клетки, дают одинаковые суммы. Например: 1+25=19+7=18+8=23+3= =6+20=2+24=4+22 и т. д. Магические квадраты, обладающие таким свойством, называются симметричными.

=26

Квадраты порядка, кратного четырем. Для составления какого-либо магического квадрата порядка n=4, 8, 12, ..., 4k удобна, например, такая простая схема: Разместить числа в клетках заданного квадрата в порядке их возрастания (в натуральном порядке); Выделить по углам заданного квадрата четыре квадрата
Слайд 17

Квадраты порядка, кратного четырем

Для составления какого-либо магического квадрата порядка n=4, 8, 12, ..., 4k удобна, например, такая простая схема: Разместить числа в клетках заданного квадрата в порядке их возрастания (в натуральном порядке); Выделить по углам заданного квадрата четыре квадрата со сторонами n/4 и в центре один квадрат со стороной n/2 В пяти выделенных квадратах обменять местами числа, расположенные симметрично относительно центра заданного квадрата; это значит, что в натуральном расположении чисел квадрата четвертого порядка надо поменять местами 1 и 16, 4 и 13, 6 и 11, 7 и 10. Квадраты, составленные по указанной схеме, будут всегда магическими симметрическими.

Конец
Слайд 18

Конец

Список похожих презентаций

"Магические квадраты – магия или наука

"Магические квадраты – магия или наука

Милостивый государь, я составил магический квадрат 21-го порядка! - А я рамочный 23-го! (из переписи Баше де Мезириака и Рене Декарта). Составление ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...

Конспекты

Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 января 2019
Категория:Математика
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации