- Углерод. Аллотропные модификации

Презентация "Углерод. Аллотропные модификации" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29

Презентацию на тему "Углерод. Аллотропные модификации" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 29 слайд(ов).

Слайды презентации

Углерод. Аллотропные модификации
Слайд 1

Углерод

Аллотропные модификации

Положение в таблице Менделеева. Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе четвертой группы, втором периоде. Углерод-типичный неметалл.
Слайд 2

Положение в таблице Менделеева

Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе четвертой группы, втором периоде. Углерод-типичный неметалл.

Нахождение в природе. В настоящее время известно более миллиона соединений углерода с другими элементами. Их изучение составляет целую науку – органическую химию. В тоже время за изучение свойств чистого углерода ученые взялись сравнительно недавно - около 20 лет назад.
Слайд 3

Нахождение в природе

В настоящее время известно более миллиона соединений углерода с другими элементами. Их изучение составляет целую науку – органическую химию. В тоже время за изучение свойств чистого углерода ученые взялись сравнительно недавно - около 20 лет назад.

Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но несмотря на это, он играет огромную роль в живой и неживой природе.
Слайд 4

Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но несмотря на это, он играет огромную роль в живой и неживой природе.

Углерод входит в состав органических веществ в растительных и живых организмах, в состав ДНК. Содержится в мышечной ткани – 67%, костной ткани – 36% и крови человека (в человеческом организме массой 70 кг в среднем содержится 16 кг связанного углерода).
Слайд 5

Углерод входит в состав органических веществ в растительных и живых организмах, в состав ДНК. Содержится в мышечной ткани – 67%, костной ткани – 36% и крови человека (в человеческом организме массой 70 кг в среднем содержится 16 кг связанного углерода).

Свободный углерод. В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др.
Слайд 6

Свободный углерод

В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др.

Алмаз
Слайд 7

Алмаз

Графит
Слайд 8

Графит

Модель фуллерена С60
Слайд 9

Модель фуллерена С60

Все это - чистый углерод
Слайд 10

Все это - чистый углерод

Алмаз – бесцветное, прозрачное, сильно преломляющее свет вещество. Алмаз тверже всех найденных в природе веществ, но при этом довольно хрупок. Он настолько тверд, что оставляет царапины на большинстве материалов. Структура алмаза
Слайд 11

Алмаз – бесцветное, прозрачное, сильно преломляющее свет вещество. Алмаз тверже всех найденных в природе веществ, но при этом довольно хрупок. Он настолько тверд, что оставляет царапины на большинстве материалов.

Структура алмаза

Плотность алмаза – 3,5 г/см3, tплав=3730С, tкип=4830оС. Алмаз можно получить из графита при p > 50 тыс. атм. и tо = 1200оC В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико.
Слайд 12

Плотность алмаза – 3,5 г/см3, tплав=3730С, tкип=4830оС. Алмаз можно получить из графита при p > 50 тыс. атм. и tо = 1200оC В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико.

Непрерывная трехмерная сетка ковалентных связей, которая характеризуется большой прочностью, определяет многие свойства алмаза, так то плохая тепло- и электропроводимость, а также химическая инертность. Алмазы очень редки и ценны, их вес измеряется в каратах (1 карат=200мг). Ограненный алмаз называю
Слайд 13

Непрерывная трехмерная сетка ковалентных связей, которая характеризуется большой прочностью, определяет многие свойства алмаза, так то плохая тепло- и электропроводимость, а также химическая инертность. Алмазы очень редки и ценны, их вес измеряется в каратах (1 карат=200мг). Ограненный алмаз называют бриллиантом.

Знаменитый бриллиант «Кохинор»

Графит – устойчивая при нормальных условиях аллотропная модификация углерода, имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок и оставляет черные следы на бумаге. Структура графита
Слайд 14

Графит – устойчивая при нормальных условиях аллотропная модификация углерода, имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок и оставляет черные следы на бумаге.

Структура графита

Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседними, расположенными вокруг него в виде правильного треугольника.
Слайд 15

Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседними, расположенными вокруг него в виде правильного треугольника.

Графит характеризуется меньшей плотностью и твердостью, а также графит может расщепляться на тонкие чешуйки. Чешуйки легко прилипают к бумаге – вот почему из графита делают грифели карандашей. В пределах шестиугольников возникает склонность к металлизации, что объясняет хорошую тепло- и электропрово
Слайд 16

Графит характеризуется меньшей плотностью и твердостью, а также графит может расщепляться на тонкие чешуйки. Чешуйки легко прилипают к бумаге – вот почему из графита делают грифели карандашей. В пределах шестиугольников возникает склонность к металлизации, что объясняет хорошую тепло- и электропроводность графита, а также его металлический блеск.

Графитовый электрод

Карбин. Карбин был получен в начале 60-х годов В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым. Карбин имеет кристаллическую структуру, в которой атомы углерода соединены чередующимися одинарными и тройными связями. Строение карбина
Слайд 17

Карбин

Карбин был получен в начале 60-х годов В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым. Карбин имеет кристаллическую структуру, в которой атомы углерода соединены чередующимися одинарными и тройными связями.

Строение карбина

Он имеет вид черного мелкокристаллического порошка, однако может существовать в виде белого вещества с промежуточной плотностью. Карбин обладает полупроводниковыми свойствами, под действием света его проводимость резко увеличивается.
Слайд 18

Он имеет вид черного мелкокристаллического порошка, однако может существовать в виде белого вещества с промежуточной плотностью. Карбин обладает полупроводниковыми свойствами, под действием света его проводимость резко увеличивается.

За счет существования различных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке, физические свойства карбина могут меняться в широких пределах. Позднее карбин был найден в природе в виде вкраплений в природном графите, содержащемся в минерале чаоит, а также
Слайд 19

За счет существования различных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке, физические свойства карбина могут меняться в широких пределах. Позднее карбин был найден в природе в виде вкраплений в природном графите, содержащемся в минерале чаоит, а также в метеоритном веществе.

Метеорит содержащий вкрапления карбина

Другие формы углерода. Известны и другие формы углерода, такие как уголь, кокс и сажа. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза. Сажа
Слайд 20

Другие формы углерода

Известны и другие формы углерода, такие как уголь, кокс и сажа. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза.

Сажа

Фуллерены. Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников. Фуллерен С70
Слайд 21

Фуллерены

Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников.

Фуллерен С70

Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие из шестиугольников и пятиугольников. Купол Фуллера
Слайд 22

Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие из шестиугольников и пятиугольников.

Купол Фуллера

В противоположность первым двум, графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверх
Слайд 23

В противоположность первым двум, графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверхность, которая имеет форму сферы.

Нанотрубки. Наряду со сфероидальными углеродными структурами, могут образовываться также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств. Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоск
Слайд 24

Нанотрубки

Наряду со сфероидальными углеродными структурами, могут образовываться также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств. Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода.

Строение нанотрубки

На рисунке представлена идеализированная модель однослойной нанотрубки. Такая трубка заканчивается полусферическими вершинами, содержащими наряду с правильными шестиугольниками, также по шесть правильных пятиугольников. Наличие пятиугольников на концах трубок позволяет рассматривать их как предельны
Слайд 25

На рисунке представлена идеализированная модель однослойной нанотрубки. Такая трубка заканчивается полусферическими вершинами, содержащими наряду с правильными шестиугольниками, также по шесть правильных пятиугольников. Наличие пятиугольников на концах трубок позволяет рассматривать их как предельный случай молекул фуллеренов, длина продольной оси которых значительно превышает их диаметр.

Наночастицы. В процессе образования фуллеренов из графита образуются также наночастицы. Это замкнутые структуры, подобные фуллеренам, но значительно превышающие их по размеру. В отличие от фуллеренов, они также как и нанотрубки могут содержать несколько слоев., имеют структуру замкнутых, вложенных д
Слайд 26

Наночастицы

В процессе образования фуллеренов из графита образуются также наночастицы. Это замкнутые структуры, подобные фуллеренам, но значительно превышающие их по размеру. В отличие от фуллеренов, они также как и нанотрубки могут содержать несколько слоев., имеют структуру замкнутых, вложенных друг в друга графитовых оболочек. В наночастицах, аналогично графиту, атомы внутри оболочки связаны химическими связями, а между атомами соседних оболочек действует слабое ван-дер-ваальсово взаимодействие. Обычно оболочки наночастиц имеют форму близкую к многограннику. В структуре каждой такой оболочки, кроме шестиугольников, как в структуре графита, есть 12 пятиугольников, наблюдаются дополнительные пары из пяти и семиугольников.

Графен. Графе́н— двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp²-гибридизации и соединённых посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделённу
Слайд 27

Графен

Графе́н— двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp²-гибридизации и соединённых посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью и рекордно большой теплопроводностью Высокая подвижность носителей заряда (максимальная подвижность электронов среди всех известных материалов) делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.

Основной из существующих в настоящее время способов получения графена в условиях научных лабораторий основан на механическом отщеплении или отшелушивании слоёв Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другой известный способ — метод термическ
Слайд 28

Основной из существующих в настоящее время способов получения графена в условиях научных лабораторий основан на механическом отщеплении или отшелушивании слоёв Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другой известный способ — метод термического разложения подложки карбида кремния— гораздо ближе к промышленному производству. Поскольку графен впервые был получен только в 2004 году, он ещё недостаточно хорошо изучен и привлекает к себе повышенный интерес.

Конец
Слайд 29

Конец

Список похожих презентаций

Аллотропные видоизменения углерода Многоликий углерод

Аллотропные видоизменения углерода Многоликий углерод

Основной вопрос: Каким образом разное бывает единым? Вопрос учебной темы: Каковы особенности строения углерода? Почему углерод многолик? Учебные предметы: ...
Углерод и его соединения

Углерод и его соединения

Урок ведёт Шаркова Г. М. Присутствуют учащиеся 9 «а» класса. Цель Урока. • Повторить, систематизировать и расширить знания учащихся по данной теме ...
Углерод и его соединения

Углерод и его соединения

Необходимо вспомнить. Положение химического элемента в таблице Д.И.Менделеева. Электронная формула атома углерода. Какие высшую и низшую степени окисления ...
Углерод и его свойства

Углерод и его свойства

Строение атома углерода. Углерод (лат. Carboneum) С – химический элемент IV группы периодической системы Менделеева: атомный номер 6, атомная масса ...
Углерод и его свойства

Углерод и его свойства

Строение атома. В периодической таблице химических элементов углерод (С) расположен во втором периоде, в IV группе главной подгруппы. Углерод (С) ...
Углерод – химический элемент и простое вещество

Углерод – химический элемент и простое вещество

Цели урока:. Познакомить учащихся с распространением химического элемента углерода в природе Вспомнить электронное строение атома углерода Закрепить ...
Аллотропия. Аллотропные формы серы

Аллотропия. Аллотропные формы серы

Аллотро́пия (от др.-греч. αλλος — «другой», τροπος — «поворот, свойство») — существование одного и того же химического элемента в виде двух и более ...
Углерод, соединения углерода

Углерод, соединения углерода

Цель занятия: обобщение, систематизация и углубление знаний по теме «Углерод и его соединения». Вопросник:. Элементы, содержащиеся в живых организмах. ...
Углерод

Углерод

Строение и свойства атомов. Углерод С –первый элемент главной подгруппы IV группы Периодической системы. Степень окисления -4 ,+4. Углерод- простое ...
Углерод

Углерод

Строение атома -. Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций ...
Углерод

Углерод

Строение атома. Химический элемент IV группы периодической системы Менделеева Атомный номер 6 На внешнем энергетическом уровне содержит 4 электрона ...
Углерод

Углерод

Общая характеристика углерода. В. Углерод (Carboneum-рождающий уголь) 1. Характеристика по ПСХЭ. а) неметалл б) IV группа, главная подгруппа в) II ...
Интегрированный урок (химия + английский язык) "Углерод"

Интегрированный урок (химия + английский язык) "Углерод"

Любое препятствие преодолевается настойчивостью. Леонардо да Винчи. CARBON. Carbon is the basic element of organic chemistry. It is in every living ...
Аллотропные видоизменения неметаллов

Аллотропные видоизменения неметаллов

Аллотропия неметаллов. Кислород, Озон. Кислород О2 при обычных условиях –газ без цвета и запаха, немного тяжелее воздуха в воде малорастворим. Жидкий ...
Углерод и кремний

Углерод и кремний

Углерод и кремний являются химическими элементами IVA-группы периодической системы. К этой же группе периодической системы относят германий Ge, олово ...
Углерод

Углерод

С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. C – алмаз,графит,карбин CaCO3 – кальций, ...
Углерод и кремний

Углерод и кремний

Нахождение в природе. Среди множества химических элементов, без которых невозможно существование жизни на Земле, углерод является главным. Более 99% ...
Углерод - строение и свойства

Углерод - строение и свойства

Строение атома. Порядковый номер – 6 Строение атома: протонов – 6, нейтронов – 6, электронов – 6 Энергетических уровней – 2 Число электронов на последнем ...
Урок Углерод

Урок Углерод

Девиз урока. «Мы столько можем, сколько знаем. Знания – сила». Ф.Бэкон. Цель урока:. дать общую характеристику элементам подгруппы углерода понятие ...
IV группа главная подгруппа. Углерод

IV группа главная подгруппа. Углерод

Строение атома. Заряд ядра атома +6 2 энергетических уровня 4 электрона на внешнем энергетическом уровне …2S22P2 – строение внешнего энергетического ...

Конспекты

Положение углерода и кремния в периодической системе химических элементов, строение их атомов. Углерод, аллотропные модификации

Положение углерода и кремния в периодической системе химических элементов, строение их атомов. Углерод, аллотропные модификации

Дата_____________ Класс_______________. Тема:. . Положение углерода и кремния в периодической системе химических элементов, строение их атомов. ...
Углерод, аллотропия углерода. Химический свойства и применение углерода

Углерод, аллотропия углерода. Химический свойства и применение углерода

Конспект урока по теме:. «Углерод, аллотропия углерода, физические и химический свойства. . . Применение углерода.». Выполнила:. Учитель ...
Углерод и его союзники

Углерод и его союзники

Муниципальное автономное общеообразовательное учреждение. . средняя общеобразовательная школа №8. Конспект урока по химии на конкурс. ...
Углерод и его соединения

Углерод и его соединения

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «КУЛУНДИНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1» , учитель химии высшей квалификационной категории ...
Углерод и его соединения

Углерод и его соединения

Автор: .  Абакумова Любовь Игоревна. Место работы, должность: .  МБОУ СОШ №55 г. Воронеж. Учитель химии. Регион: .  Город Воронеж. Стаж ...
Углерод

Углерод

Тема урока: Углерод. . . (Первый уровень). Интегрирующая цель:. . - знать строение атома, физические и химические свойствах углерода, понятие ...
Углерод

Углерод

Осминкина Людмила Николаевна, учитель химии МОУ «СОШ № 28» города Астрахани. . 9 класс «Углерод». Цели урока. . . Образовательная. - формирование ...
Углерод

Углерод

Муниципальное бюджетное общеобразовательное учреждение лицей 64. г. Краснодара. Конспект урока по химии. . в 9классе. «Углерод». ...
Подгруппа углерода. Углерод как простое вещество

Подгруппа углерода. Углерод как простое вещество

Тема: «Подгруппа углерода. Углерод как простое вещество». Цель урока. :. Дать общую характеристику элементам. VI. А группы, показать аллотропные ...
Общая характеристика неметаллов. Элементы IV А группы. Углерод, кремний и их соединения

Общая характеристика неметаллов. Элементы IV А группы. Углерод, кремний и их соединения

План учебного занятия № 13. Дата Предмет. химия. группа. Ф.И.О. преподавателя: Кайырбекова И.А. . І. Тема занятия:. Общая характеристика неметаллов. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:10 сентября 2018
Категория:Химия
Содержит:29 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации