Презентация "Водород" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19

Презентацию на тему "Водород" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайд(ов).

Слайды презентации

Водород
Слайд 1

Водород

План: Введение. Водород. Положение элемента в периодической системе Д.И. Менделеева. Водород в природе. Получение водорода. Так кто же виноват в нашей смерти? Водород и Вселенная. Список использованной литературы.
Слайд 2

План: Введение. Водород. Положение элемента в периодической системе Д.И. Менделеева. Водород в природе. Получение водорода. Так кто же виноват в нашей смерти? Водород и Вселенная. Список использованной литературы.

1.Введение. Водород (Hudrogenium) был открыт в первой половине XVI века немецким врачом и естествоиспытателем Парацельсом. В 1776 г. Кавендиш (Англия) установил его свойства и указал отличия от других газов. Водород имеет три изотопа: протий ¹Н, дейтерий ²Н или D, тритий ³Н или Т. Их массовые числа
Слайд 3

1.Введение.

Водород (Hudrogenium) был открыт в первой половине XVI века немецким врачом и естествоиспытателем Парацельсом. В 1776 г. Кавендиш (Англия) установил его свойства и указал отличия от других газов. Водород имеет три изотопа: протий ¹Н, дейтерий ²Н или D, тритий ³Н или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий – радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий в природе находится в ничтожно малых количествах. Ядро атома водорода ¹Н содержит один протон. Ядро дейтерия и трития включают не только протон, но и один, два нейтрона. Молекула водорода состоит из двух атомов. Приведем некоторые свойства, характеризующие атом и молекулу водорода: Энергия ионизации атома, эВ 13,60 Сродство атома к электрону, эВ 0,75 Относительная электроотрицательность 2,1 Радиус атома, нм 0,046 Межъядерное расстояние в молекуле, нм 0,0741 Стандартная энтальпия диссоциации молекул при 25ºС 436,1

2. Водород. Положение водорода в периодической таблице Д.И. Менделеева. В самом конце XVIII и в начале XIХ века химия вступила в период установления количественных закономерностей: в 1803 году был сформулирован закон кратных отношений (вещества реагируют между собой в весовых отношениях, кратных хим
Слайд 4

2. Водород. Положение водорода в периодической таблице Д.И. Менделеева.

В самом конце XVIII и в начале XIХ века химия вступила в период установления количественных закономерностей: в 1803 году был сформулирован закон кратных отношений (вещества реагируют между собой в весовых отношениях, кратных химическим эквивалентам), а в 1814 году опубликована первая в истории химической науки таблица относительных атомных весов элементов. В этой таблице на первом месте оказался водород, а атомные массы других элементов выражались числами, близкими к целым. Особое положение, которое с самого начала занял водород, не могло не привлечь внимания ученых, и в 1841 году химики смогли ознакомиться с теорией Уильяма Праута, развившего теорию Древнегреческих философов о единстве мира и предположившего, что все элементы образованы из водорода как из самого легкого элемента. Прауту возражал Й.Я. Берцелиус, как раз занимавшийся уточнением атомных весов: из его опытов следовало, что атомные веса элементов не находятся в целочисленных отношениях к

атомному весу водорода. Но, возражали сторонники Праута, атомные веса определены еще недостаточно точно и в качестве примера ссылались на эксперименты Жана Стаса, который в 1840 году исправил атомный вес углерода с 11,26 (эта величина была установлена Берцелиусом) на 12,0. И все же привлекательную г
Слайд 5

атомному весу водорода. Но, возражали сторонники Праута, атомные веса определены еще недостаточно точно и в качестве примера ссылались на эксперименты Жана Стаса, который в 1840 году исправил атомный вес углерода с 11,26 (эта величина была установлена Берцелиусом) на 12,0. И все же привлекательную гипотезу Праута пришлось на время оставить: вскоре тот же Стас тщательными и не подлежащими сомнению исследованиями установил, что, например, атомный вес хлора равен 35,45, т. е. никак не может быть выражен числом, кратным атомному весу водорода... Но вот в 1869 году Дмитрий Иванович Менделеев создал свою периодическую классификацию элементов, положив в ее основу атомные веса элементов как их наиболее фундаментальную характеристику. И на первом месте в системе элементов, естественно, оказался водород. С открытием периодического закона стадо ясно, что химические элементы образуют единый ряд, построение которого подчиняется какой-то внутренней закономерности. И это не могло вновь не вызвать к жизни гипотезу Праута, — правда, в несколько измененной форме: в 1888 году Уильям Крукс предположил, что все элементы, в том числе и водород, образованы путем уплотнения некоторой первичной материи, названной им протилом. А так как протил, рассуждал Крукс, по-видимому, имеет очень малый атомный вес, то отсюда понятно и возникновение дробных атомных весов.

Но вот что любопытно. Самого Менделеева необычайно занимал вопрос: а почему периодическая система должна начинаться именно с водорода? Что мешает существованию элементов с атомным весом, меньше единицы? И в качестве такого элемента в 1905 году Менделеев называет... «мировой эфир». Более того, он пом
Слайд 6

Но вот что любопытно. Самого Менделеева необычайно занимал вопрос: а почему периодическая система должна начинаться именно с водорода? Что мешает существованию элементов с атомным весом, меньше единицы? И в качестве такого элемента в 1905 году Менделеев называет... «мировой эфир». Более того, он помещает его в нулевую группу над гелием и рассчитывает его атомный вес — 0,000001! Инертный газ со столь малым атомным весом должен быть по мнению Менделеева, всепроникающим, а его упругие колебания могли бы объяснить световые явления... Увы, атому предвидению великого ученого не было суждено сбыться. Но Менделеев был прав в том отношении, что элементы не построены из тождественных частиц: мы знаем теперь, что они построены из протонов, нейтронов и электронов. Но позвольте, воскликнете вы, ведь протон — это ядро атома водорода. Значит Праут был все-таки прав? Да, он действительно был по-своему прав. Но это была, если можно так выразиться, преждевременная правота, потому что в то время ее нельзя было ни по-настоящему подтвердить, ни по-настоящему опровергнуть...

Впрочем, сам водород сыграл в истории развития научной мысли еще немалую роль. В 1913 году Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома и внутреннюю сущность закона периодичности. И теория Бора была признана потому, что рассчи
Слайд 7

Впрочем, сам водород сыграл в истории развития научной мысли еще немалую роль. В 1913 году Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома и внутреннюю сущность закона периодичности. И теория Бора была признана потому, что рассчитанный на ее основе спектр водорода полностью совпал с наблюдаемым.

3. Водород в природе.
Слайд 8

3. Водород в природе.

Водород встречается в свободном состоянии на Земле лишь в незначительных количествах. Иногда он выделяется вместе с другими газами при вулканических извержениях, а также из буровых скважин при добычи нефти. Но в виде соединений водород весьма распространен. Это видно уже из того, что он составляет д
Слайд 9

Водород встречается в свободном состоянии на Земле лишь в незначительных количествах. Иногда он выделяется вместе с другими газами при вулканических извержениях, а также из буровых скважин при добычи нефти. Но в виде соединений водород весьма распространен. Это видно уже из того, что он составляет девятую часть массы воды. Водород входит в состав всех животных и растительных организмов, нефти, каменного и бурого углей, природных газов и ряда минералов. На долю водорода из всей массы земной коры, считая воду и воздух, приходится около 1%. Однако при пересчете на проценты от общего числа атомов содержание водорода в земной коре 17%. Водород самый распространенный элемент космоса. На его долю приходится около половины массы Солнца и большинства других звезд. Он содержится в газовых туманностях, в межзвездном газе, входит в состав звезд. В недрах звезд происходит превращение ядер атомов водорода в ядра атомов гелия. Этот процесс протекает с выделением энергии; для многих звезд, в том числе для Солнца, он служит главным источником энергии. Скорость процесса, т. е. количество ядер водорода, превращающихся в ядра гелия в одном кубическом метре за одну секунду, мала. Поэтому и количество энергии, выделяющейся за единицу времени в единице объема, мало. Однако, вследствие огромности массы Солнца, общее количество энергии, генерируемой и излучаемой Солнцем, очень велико. Оно соответствует уменьшению массы Солнца приблизительно на 4 млн. т в секунду.

4. Получение водорода. Наиболее старый способ получения водорода - электролиз воды, при котором, пропуская постоянный ток, на катоде накапливают водород, а на аноде - кислород. Такая технология делает его слишком дорогим энергоносителем. Поэтому пока водород используется только для запуска космическ
Слайд 10

4. Получение водорода.

Наиболее старый способ получения водорода - электролиз воды, при котором, пропуская постоянный ток, на катоде накапливают водород, а на аноде - кислород. Такая технология делает его слишком дорогим энергоносителем. Поэтому пока водород используется только для запуска космических аппаратов с водородно-кислородными двигателями. Чаще для получения водорода используют технологию горячей переработки водяного пара при температуре 700-900 °С с участием легкого бензина и тяжелого жидкого топлива, отбирающего кислород. Это тоже дорогой способ. Существует несколько проектов дешевого получения водорода. Например, предлагается построить в Гренландии несколько грандиозных электростанций, которые будут использовать талую воду ледников для производства электроэнергии, а энергия будет на месте затрачиваться на электролиз для получения водорода, его сжижения и транспортировку по трубопроводам и в танкерах в Европу и Америку. Другие проекты - использование энергии атомных и специальных солнечных электростанций для получения водорода путем электролиза воды. Однако сама природа дает рецепт для получения водорода без огромных затрат энергии. На поверхности частиц взвесей в воде существуют адсорбированные и закрепленные на поверхности ферменты с высокой специфичностью каталитического действия.

Они способны расщеплять одну-единственную связь в одном из веществ при очень высокой активности в обычных условиях. Иммобилизованные ферменты могут быть использованы для получения водорода. Представьте себе горсть порошка с иммобилизованным на частицах ферментом. Порошок засыпают в банку с водой, ст
Слайд 11

Они способны расщеплять одну-единственную связь в одном из веществ при очень высокой активности в обычных условиях. Иммобилизованные ферменты могут быть использованы для получения водорода. Представьте себе горсть порошка с иммобилизованным на частицах ферментом. Порошок засыпают в банку с водой, стоящую на солнце, и в ней начинается активное выделение водорода. Уже делаются попытки создания такого "магического порошка". Возможен также микробиологический способ получения водорода. В почве существует ряд микроорганизмов, которые выделяют водород в виде побочного продукта. В случае решения задачи дешевого получения водородного топлива и разработки технологии его накопления, хранения и транспортировки человечество получит неиссякаемый источник экологически чистого энергоносителя, встроенного в естественную систему круговорота воды. Наиболее старый способ получения водорода - электролиз воды, при котором, пропуская постоянный ток, на катоде накапливают водород, а на аноде - кислород. Такая технология делает его слишком дорогим

энергоносителем. Поэтому пока водород используется только для запуска космических аппаратов с водородно-кислородными двигателями. Чаще для получения водорода используют технологию горячей переработки водяного пара при температуре 700-900 °С с участием легкого бензина и тяжелого жидкого топлива, отби
Слайд 12

энергоносителем. Поэтому пока водород используется только для запуска космических аппаратов с водородно-кислородными двигателями. Чаще для получения водорода используют технологию горячей переработки водяного пара при температуре 700-900 °С с участием легкого бензина и тяжелого жидкого топлива, отбирающего кислород. Это тоже дорогой способ. Существует несколько проектов дешевого получения водорода. Например, предлагается построить в Гренландии несколько грандиозных электростанций, которые будут использовать талую воду ледников для производства электроэнергии, а энергия будет на месте затрачиваться на электролиз для получения водорода, его сжижения и транспортировку по трубопроводам и в танкерах в Европу и Америку. Другие проекты - использование энергии атомных и специальных солнечных электростанций для получения водорода путем электролиза воды. Однако сама природа дает рецепт для получения водорода без огромных затрат энергии. На поверхности частиц взвесей в воде существуют адсорбированные и закрепленные на поверхности ферменты с высокой специфичностью каталитического действия. Они способны расщеплять одну-единственную связь в одном из веществ при очень высокой активности в обычных условиях. Иммобилизованные ферменты могут быть использованы для получения водорода. Представьте себе горсть порошка с иммобилизованным на частицах ферментом. Порошок засыпают в банку с водой, стоящую на солнце, и в ней начинается активное выделение водорода. Уже делаются попытки создания такого "магического порошка".

5. Так кто же виноват в нашей смерти? Возможен также микробиологический способ получения водорода. В почве существует ряд микроорганизмов, которые выделяют водород в виде побочного продукта. В случае решения задачи дешевого получения водородного топлива и разработки технологии его накопления, хранен
Слайд 13

5. Так кто же виноват в нашей смерти?

Возможен также микробиологический способ получения водорода. В почве существует ряд микроорганизмов, которые выделяют водород в виде побочного продукта. В случае решения задачи дешевого получения водородного топлива и разработки технологии его накопления, хранения и транспортировки человечество получит неиссякаемый источник экологически чистого энергоносителя, встроенного в естественную систему круговорота воды.

К смерти нас приводит дефицит протонов. Старение и его многочисленные лица, болезни, также являются результатом водородного дефицита. Организм без ионов водорода (протонов) не способен снять зеленый экран смерти и мы покидаем этот мир. Возникновение зеленого экрана зависит от дыхания кислородом возд
Слайд 14

К смерти нас приводит дефицит протонов. Старение и его многочисленные лица, болезни, также являются результатом водородного дефицита. Организм без ионов водорода (протонов) не способен снять зеленый экран смерти и мы покидаем этот мир. Возникновение зеленого экрана зависит от дыхания кислородом воздуха, который сжигает розовый гем, превращая его в зеленый биливердин. Кислород - сильнейший окислитель. Но убирает зеленый экран водород (протон). Водород - сильнейший восстановитель. И если кислород - сжигатель, то водород - гаситель. Окисление и восстановление суть два противоположных процесса. Но эти процессы едины: одно не бывает без другого. Более того, там, где есть одно проявляется и прямо противоположное другое. Это хорошо видно на примере нашего дыхания. Биохимия называет дыхание биологическим окислением. Но та же биохимия дала дыханию и другое, более точное наименование. По-другому, дыхание - это отщепление водорода (протонов) от субстратов с помощью кислорода (дегидрирование субстратов). То есть согласно этому определению, кислород служит для того, чтобы получать ионы водорода. А мы уже знаем, для чего они нужны. Протоны нам дают возможность жить! Итак, кислород дыхания служит для получения протонов. Но значит, вполне справедливо и должно иметь место прямо противоположное явление, восстановление с помощью водорода, в результате чего мы должны повышать потребление кислорода. Но именно так это и происходит!

Судите сами. Протон, убирая зеленый экран смерти, восстанавливает железо, увеличивает синтез гемоглобина и дыхательных ферментов. А это значит, что он позволяет увеличить объемы потребления кислорода воздуха, ибо есть, чем этот кислород принять! И главный признак старения организма, кислородный дефи
Слайд 15

Судите сами. Протон, убирая зеленый экран смерти, восстанавливает железо, увеличивает синтез гемоглобина и дыхательных ферментов. А это значит, что он позволяет увеличить объемы потребления кислорода воздуха, ибо есть, чем этот кислород принять! И главный признак старения организма, кислородный дефицит (гипоксия) исчезает. Таков фундаментальный закон Природы. Закон единства и борьбы противоположностей. (О нем - в последней главе). Без кислорода нет водорода, но и без водорода не бывать кислороду. С открытием Биочасов открылась дорога не только в долголетие, но и в "мечту всех мечт мечтее", в бессмертие! Но в чем же тогда дело? Почему мы все-таки умираем, несмотря на то, что между кислородом и водородом стоит причинно-следственный знак равенства? Секрет смерти в одной маленькой детали, можно сказать, в мелочи. Между кислородом и водородом можно было бы спокойно поставить знак равенства в том случае, если бы время нашей жизни в Биочасах Земли шло строго по кругу. А этого не происходит. Время идет по спирали, где каждый последующий годовой виток никогда не бывает точной копией витка предыдущего. Поэтому потраченная на производство протонов клеточная вода

никогда не может быть полностью восполнена в годовом цикле окисления и восстановления. Мешает действие реликтового излучения Вселенной. Свою лепту в нашу смерть вносит и 11-летний цикл солнечной активности, связанный с вращением Солнца вокруг своей оси. Расстояние между годовыми витками спирали врем
Слайд 16

никогда не может быть полностью восполнена в годовом цикле окисления и восстановления. Мешает действие реликтового излучения Вселенной. Свою лепту в нашу смерть вносит и 11-летний цикл солнечной активности, связанный с вращением Солнца вокруг своей оси. Расстояние между годовыми витками спирали времени называется шагом. Шаг спирали жизни никогда не бывает постоянным. Шаг, учитываемый после прекращения периода роста, равен годовому дефициту протона. Получается, что при самом общем рассмотрении вопроса жизни и смерти человека, причиной смерти можно назвать дыхание кислородом воздуха. При ближайшем рассмотрении проблемы причиной смерти можно назвать водородный дефицит организма. При более пристальном взгляде на вещи, причиной смерти является спиральный ход времени в Биочасах относительно реликтового излучения Вселенной. Ну а при расследовании с пристрастием причиной смерти является реликтовое излучение Вселенной и периодическая активность Солнца в его 11-летнем цикле. Именно они не позволяют воспроизводить на Земле одно и то же время из года в год, а посему мы умираем. Но кто есть кто в этой фундаментальной причине? Ответ прост. Реликтовое излучение является радиоволнами, а Солнце сводит нас в могилу оранжевыми лучами своего спектра. Именно радиоволны и оранжевые лучи останавливают колебания весов Жизни в Биочасах, блокируя нашу печень, почку, толстую кишку, кору головного мозга, сердечную сумку, костный мозг и кости, желудок, мочевой пузырь.

Но... Именно оранжевые лучи и радиоволны помогают снять нам зеленый экран смерти. Так почему же мы умираем? Что причина нашей смерти? Ответ все тот же: дефицит ионов водорода (протонов) суть причина смерти человека и всего живого на планете Земля. Да, никто не может погасить радиоволны реликтового и
Слайд 17

Но... Именно оранжевые лучи и радиоволны помогают снять нам зеленый экран смерти. Так почему же мы умираем? Что причина нашей смерти? Ответ все тот же: дефицит ионов водорода (протонов) суть причина смерти человека и всего живого на планете Земля. Да, никто не может погасить радиоволны реликтового излучения Вселенной, никто не может остановить движение и вращение Солнца, но никто не может запретить каждому из нас восполнить водородный дефицит и замкнуть спираль времени в кольцо времени. А в песне поется, что «у кольца начала нет и нет конца».

6. Водород и Вселенная. Слова «дейтерий» и «тритий» напоминают нам о том, что сегодня человек располагает мощнейшим источником энергии, высвобождающейся при реакции 21Н + 31Н 42He + n0 + 17,6 Мэв. Эта реакция начинается при десяти миллионах градусов и протекает за ничтожные доли секунды при взрыве т
Слайд 18

6. Водород и Вселенная.

Слова «дейтерий» и «тритий» напоминают нам о том, что сегодня человек располагает мощнейшим источником энергии, высвобождающейся при реакции 21Н + 31Н 42He + n0 + 17,6 Мэв. Эта реакция начинается при десяти миллионах градусов и протекает за ничтожные доли секунды при взрыве термоядерной бомбы, причем выделяется гигантское' по масштабам Земли количество энергии. Водородные бомбы иногда сравнивают с Солнцем. Однако мы уже видели, что на Солнце идут медленные и стабильные термоядерные процессы. Солнце дарует нам жизнь, а водородная бомба — сулит смерть... Но когда-нибудь настанет время,— и это время не за горами,—когда мерилом ценности станет не золото, а энергия. И тогда изотопы водорода спасут человечество от надвигающегося энергетического голода: в управляемых термоядерных процессах каждый литр природной воды будет давать столько же энергии, сколько ее дают сейчас триста литров бензина. И человечество будет с недоумением вспоминать, что было время, когда люди угрожали друг другу животворным источником тепла и света...

Список использованной литературы: Большой энциклопедический словарь «Основы общей химии» Г.И. Новиков - Москва, 1988г. «Высшая школа» Справочник по химии 8-11 кл. Учебное пособие для химико-технологических специальных ВУЗов «Вариации на тему одной планеты», Франц Шебек Москва, 1977г. «Семь чудес и д
Слайд 19

Список использованной литературы: Большой энциклопедический словарь «Основы общей химии» Г.И. Новиков - Москва, 1988г. «Высшая школа» Справочник по химии 8-11 кл. Учебное пособие для химико-технологических специальных ВУЗов «Вариации на тему одной планеты», Франц Шебек Москва, 1977г. «Семь чудес и другие», В.З. Черняк - Москва, 1990г.

Список похожих презентаций

Водород

Водород

В О Д О Р О Д. «Вода… Ты не имеешь ни вкуса ни цвета ни запаха,тебя невозможно описать тобой наслаждаешься. Ты не просто необходима для жизни, ты ...
Водород, его общая характеристика, нахождение в природе и его свойства

Водород, его общая характеристика, нахождение в природе и его свойства

Цели. сформировать знания учащихся о водороде как о атоме и простом веществе, его способах получении, свойствах и применении научить учащихся работать ...
Водород

Водород

Химический диктант. Выбрать свойства, характерные для: I вариант – металлов II вариант – неметаллов. Начало всех начал – водород! Водород в космосе. ...
Водород

Водород

ВОДОРОД - H, химический элемент с атомным номером 1, атомная масса 1,00794. Характеризуя водород по положению в периодической системе Менделеева, ...
Водород

Водород

Газ Первый в таблице Менделеева и самый распространенный во Вселенной элемент большинству знаком из школьной химии. Газ, состоящий из молекул H2, ...
Водород

Водород

Водород самый распространенный элемент во вселенной. История открытия. Впервые этот газ в чистом виде выделил 240 лет назад английский химик Генри ...
Водород

Водород

ВОДОРОД (лат. Hydrogenium), H, химический элемент с атомным номером 1, атомная масса 1.00794. Химический символ водорода Н читается в нашей стране ...
Предельные углеводороды химия

Предельные углеводороды химия

Органическая химия – это раздел химической науки, в котором изучаются соединения углерода и их превращения. В наши дни к органическим веществам относятся ...
Химический элемент водород

Химический элемент водород

Цели и задачи урока. повторить и закрепить знания, умения и навыки по теме «Свойства водорода и кислот. Формулы солей»; продолжить формирование познавательных ...
Химический элемент - водород

Химический элемент - водород

Краткая характеристика элемента. H 1 1,00794 1s1 Водород. Водоро́д — первый элемент периодической системы элементов. Широко распространён в природе. ...
Кислород и водород

Кислород и водород

повторить физические и химические свойства водорода и кислорода, распространение их в природе вспомнить уравнения горения простых и сложных веществ ...
Органическая химия

Органическая химия

Цель: уяснить знания о предмете изучения и особенностях органической химии. Широко распростирает химия руки свои в дела человеческие … куда ни посмотрим, ...
Опасная химия

Опасная химия

Выводы по теме «Осторожно, ртуть!»:. Ртуть- очень ядовитый материал, который попадает в организм человека при вдыхании ядовитых паров или употреблении ...
Органическая химия

Органическая химия

ФЕНОЛЫ. 2. Классификация и изомерия Как и спирты, фенолы бывают одноатомные (одна -OH) и многоатомными (несколько -OH). Для фенолов характерна изомерия ...
Токсикологическая химия

Токсикологическая химия

Токсикологическая химия. Токсикологическая химия – это наука о химических превращениях токсических веществ и их метаболитов в организме, методах их ...
Азот химия

Азот химия

План урока:. История открытия Цели Нахождение в природе Строение и свойства атома и молекулы Физические и химические свойства Получение и применение ...
Периодическая система химия

Периодическая система химия

Предпосылки. И. Дёберейнер, Ж. Дюма, французский химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Ньюлендс - существование групп элементов, сходных ...
Сера химия

Сера химия

Сера принадлежит к числу веществ, известных человечеству испокон веков. Ещё древние греки и римляне нашли ей разнообразное практическое применение. ...
Бытовая химия

Бытовая химия

Цель исследования, изучить влияние препаратов бытовой химии на здоровье человека. Задачи исследования: 1. Изучить опасности современной бытовой химии; ...
Бытовая химия

Бытовая химия

История Товары бытовой химии имеют очень древнюю историю. Освоенные в древности процессы солеварения, окраски тканей, приготовления рисовальных красок ...

Конспекты

Водород – химический элемент и простое вещество

Водород – химический элемент и простое вещество

Тема урока «Водород – химический элемент и простое вещество». Тип урока: урок обобщения и систематизации знаний по теме «Водород». Форма урока: ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 ноября 2018
Категория:Химия
Содержит:19 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации