- Неорганические полимеры

Презентация "Неорганические полимеры" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48

Презентацию на тему "Неорганические полимеры" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 48 слайд(ов).

Слайды презентации

Различные типы неорганических полимеров. Морозова Елена Кочкин Виктор Шмырёв Константин Малов Никита Артамонов Владимир
Слайд 1

Различные типы неорганических полимеров

Морозова Елена Кочкин Виктор Шмырёв Константин Малов Никита Артамонов Владимир

Неорганические полимеры. Неорганические полимеры — полимеры, не содержащие в повторяющемся звене связей C-C, но способные содержать органический радикал как боковые заместители.
Слайд 2

Неорганические полимеры

Неорганические полимеры — полимеры, не содержащие в повторяющемся звене связей C-C, но способные содержать органический радикал как боковые заместители.

Классификация полимеров. 1. Гомоцепные полимеры Углерод и халькогены (пластическая модификация серы). 2. Гетероцепные полимеры Способны многие пары элементов, например кремний и кислород (силикон), ртуть и сера (киноварь).
Слайд 3

Классификация полимеров

1. Гомоцепные полимеры Углерод и халькогены (пластическая модификация серы).

2. Гетероцепные полимеры Способны многие пары элементов, например кремний и кислород (силикон), ртуть и сера (киноварь).

Минеральное волокно асбест
Слайд 4

Минеральное волокно асбест

Характеристика асбеста. Асбест (греч. ἄσβεστος, — неразрушимый) — собирательное название группы тонковолокнистых минералов из класса силикатов. Состоят из тончайших гибких волокон. Ca2Mg5Si8O22(OH)2 -формула Два основных типа асбестов — серпентин-асбест (хризотил-асбест, или белый асбест) и амфибол-
Слайд 5

Характеристика асбеста

Асбест (греч. ἄσβεστος, — неразрушимый) — собирательное название группы тонковолокнистых минералов из класса силикатов. Состоят из тончайших гибких волокон. Ca2Mg5Si8O22(OH)2 -формула Два основных типа асбестов — серпентин-асбест (хризотил-асбест, или белый асбест) и амфибол-асбесты

Химический состав. По химическому составу асбесты представляют собой водные силикаты магния, железа, отчасти кальция и натрия. К классу хризотил-асбестов относятся следующие вещества: Mg6[Si4O10](OH)8 2Na2O*6(Fe,Mg)O*2Fe2O3*17SiO2*3Н2О. Волокна асбеста
Слайд 6

Химический состав

По химическому составу асбесты представляют собой водные силикаты магния, железа, отчасти кальция и натрия. К классу хризотил-асбестов относятся следующие вещества: Mg6[Si4O10](OH)8 2Na2O*6(Fe,Mg)O*2Fe2O3*17SiO2*3Н2О

Волокна асбеста

Безопасность. Асбест практически инертен и не растворяется в жидких средах организма, но обладает заметным канцерогенным эффектом. У людей, занятых на добыче и переработке асбеста, вероятность возникновения опухолей в несколько раз больше, чем у основного населения. Чаще всего вызывает рак лёгких, о
Слайд 7

Безопасность

Асбест практически инертен и не растворяется в жидких средах организма, но обладает заметным канцерогенным эффектом. У людей, занятых на добыче и переработке асбеста, вероятность возникновения опухолей в несколько раз больше, чем у основного населения. Чаще всего вызывает рак лёгких, опухоли брюшины, желудка и матки. На основе результатов всесторонних научных исследований канцерогенных веществ, Международное агентство по изучению рака отнесло асбест к первой, наиболее опасной категории списка канцерогенов.

Применение асбеста. Производства огнеупорных тканей (в том числе для пошива костюмов для пожарных). В строительстве (в составе асбесто-цементных смесей для производства труб и шифера). В местах, где требуется снизить влияние кислот.
Слайд 8

Применение асбеста

Производства огнеупорных тканей (в том числе для пошива костюмов для пожарных). В строительстве (в составе асбесто-цементных смесей для производства труб и шифера). В местах, где требуется снизить влияние кислот.

Роль неорганических полимеров в формировании литосферы
Слайд 9

Роль неорганических полимеров в формировании литосферы

Литосфера. Литосфера — твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы. Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океан
Слайд 10

Литосфера

Литосфера — твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы. Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5—10 км, а гранитный слой полностью отсутствует.

Основными компонентами земной коры и поверхностного грунта Луны являются оксиды Si и Al и их производные. Такой вывод можно сделать исходя из существующих представлений о распространенности базальтовых пород. Первичным веществом земной коры является магма - текучая форма горной породы, содержащая на
Слайд 12

Основными компонентами земной коры и поверхностного грунта Луны являются оксиды Si и Al и их производные. Такой вывод можно сделать исходя из существующих представлений о распространенности базальтовых пород. Первичным веществом земной коры является магма - текучая форма горной породы, содержащая наряду с расплавленными минералами значительное количество газов. При выходе на поверхность магма образует лаву, последняя застывая образует базальтовые породы. Основной химический компонент лавы - кремнезем, или диоксид кремния, SiO2 . Однако при высокой температуре атомы кремния могут легко замещаться на другие атомы, например алюминия, образуя различного рода алюмосиликаты. В целом литосфера представляет собой силикатную матрицу с включением других веществ, образовавшихся в результате физических и химических процессов, протекавших в прошлом в условиях высокой температуры и давления. Как сама силикатная матрица, так и включения в нее содержат по преимуществу вещества в полимерной форме, то есть гетероцепные неорганические полимеры.

Гранит. Гранит - кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд — биотита и мусковита. Граниты очень широко распространены в континентальной земной коре. Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две конт
Слайд 13

Гранит

Гранит - кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд — биотита и мусковита. Граниты очень широко распространены в континентальной земной коре. Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континентальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10—20 км). Кроме того, гранитный магматизм характерен для активных континентальных окраин ,и в меньшей степени, для островных дуг. Минеральный состав гранита: полевые шпаты — 60—65 %; кварц — 25—30 %; темноцветные минералы (биотит, редко роговая обманка) — 5—10 %.

Базальт. Минеральный состав. Основная масса сложена микролитами плагиоклазов, клинопироксена, магнетита или титаномагнетита, а также вулканическим стеклом. Наиболее распространенным акцессорным минералом является апатит. Химический состав. Содержание кремнезёма (SiO2) колеблется от 45 до 52-53 %, су
Слайд 14

Базальт

Минеральный состав. Основная масса сложена микролитами плагиоклазов, клинопироксена, магнетита или титаномагнетита, а также вулканическим стеклом. Наиболее распространенным акцессорным минералом является апатит. Химический состав. Содержание кремнезёма (SiO2) колеблется от 45 до 52-53 %, сумма щелочных оксидов Na2O+K2O до 5 %,в щелочных базальтах до 7 %. Прочие оксиды могут распределяться так: TiO2=1.8-2.3 %; Al2O3=14.5-17.9 %; Fe2O3=2.8-5.1 %; FeO=7.3-8.1 %; MnO=0.1-0.2 %; MgO=7.1-9.3 %; CaO=9.1-10.1 %; P2O5=0.2-0.5 %;

Кварц (Оксид кремния(IV), кремнезем)
Слайд 15

Кварц (Оксид кремния(IV), кремнезем)

Формула: SiO2 Цвет: бесцветный, белый, фиолетовый, серый, жёлтый, коричневый Цвет черты: белая Блеск: стеклянный, в сплошных массах иногда жирный Плотность: 2,6—2,65 г/см³ Твердость: 7
Слайд 16

Формула: SiO2 Цвет: бесцветный, белый, фиолетовый, серый, жёлтый, коричневый Цвет черты: белая Блеск: стеклянный, в сплошных массах иногда жирный Плотность: 2,6—2,65 г/см³ Твердость: 7

α-кварц. Кристаллическая решетка кварца
Слайд 19

α-кварц

Кристаллическая решетка кварца

Химические свойства
Слайд 20

Химические свойства

Кварцевое стекло
Слайд 21

Кварцевое стекло

Кристаллическая решетка коэсита
Слайд 22

Кристаллическая решетка коэсита

Применение. Кварц используется в оптических приборах, в генераторах ультразвука, в телефонной и радиоаппаратуре В больших количествах потребляется стекольной и керамической промышленностью Многие разновидности используются в ювелирном деле.
Слайд 23

Применение

Кварц используется в оптических приборах, в генераторах ультразвука, в телефонной и радиоаппаратуре В больших количествах потребляется стекольной и керамической промышленностью Многие разновидности используются в ювелирном деле.

Корунд (Al2O3 , глинозем)
Слайд 24

Корунд (Al2O3 , глинозем)

Формула: Al2O3 Цвет: голубой, красный, жёлтый, коричневый, серый Цвет черты: белая Блеск: стеклянный Плотность: 3,9—4,1 г/см³ Твердость: 9
Слайд 25

Формула: Al2O3 Цвет: голубой, красный, жёлтый, коричневый, серый Цвет черты: белая Блеск: стеклянный Плотность: 3,9—4,1 г/см³ Твердость: 9

Кристаллическая решетка корунда
Слайд 26

Кристаллическая решетка корунда

Используют как абразивный материал Используется как огнеупорный материал Драгоценные камни
Слайд 27

Используют как абразивный материал Используется как огнеупорный материал Драгоценные камни

Алюмосиликаты
Слайд 29

Алюмосиликаты

Неорганические полимеры Слайд: 26
Слайд 30
Теллур
Слайд 31

Теллур

Теллур цепочечного строения. Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических
Слайд 32

Теллур цепочечного строения

Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам.

Применение теллура. Производстве полупроводниковых материалов Производство резины Высокотемпературная сверхпроводимость
Слайд 33

Применение теллура

Производстве полупроводниковых материалов Производство резины Высокотемпературная сверхпроводимость

Селен
Слайд 34

Селен

Селен цепочечного строения. Черный Серый Красный
Слайд 35

Селен цепочечного строения

Черный Серый Красный

Серый селен. Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную решетку можно представить как несколько деформированный куб. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полт
Слайд 36

Серый селен

Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную решетку можно представить как несколько деформированный куб. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полтора раза меньше расстояния между цепями. Поэтому элементарные кубики искажены.

Применение серого селена. Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т.е. проводимость в нем создается главным образом не электронами, а «дырками». Другое практически очень важное свойство селена-полупроводника – его способность резко увеличивать электропро
Слайд 37

Применение серого селена

Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т.е. проводимость в нем создается главным образом не электронами, а «дырками». Другое практически очень важное свойство селена-полупроводника – его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.

Красный селен. Красный селен представляет собой менее устойчивую аморфную модификацию. Полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние. Не имеет определенной температуры плавлен
Слайд 38

Красный селен

Красный селен представляет собой менее устойчивую аморфную модификацию. Полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние. Не имеет определенной температуры плавления. Красный аморфный селен при повышении температуры ( - 55) начинает переходить в серый гексагональный селен

Сера
Слайд 39

Сера

Ромбическая и моноклинная модификации построены из циклических молекул S8, размещенных по узлам ромбической и моноклинной решеток Молекула S8 имеет форму короны, длины всех связей – S – S – равны 0,206 нм и углы близки к тетраэдрическим 108°
Слайд 40

Ромбическая и моноклинная модификации построены из циклических молекул S8, размещенных по узлам ромбической и моноклинной решеток Молекула S8 имеет форму короны, длины всех связей – S – S – равны 0,206 нм и углы близки к тетраэдрическим 108°

Особенности строения. Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении. Пластическая сера неустойчива и самопроизвольно превращаются в ромбическую.
Слайд 41

Особенности строения

Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении. Пластическая сера неустойчива и самопроизвольно превращаются в ромбическую.

Ромбическая сера Моноклинная сера. Пластическая сера. Расплав серы при медленном охлаждении. При комнатной t°. При добавлении холодной воды
Слайд 42

Ромбическая сера Моноклинная сера

Пластическая сера

Расплав серы при медленном охлаждении

При комнатной t°

При добавлении холодной воды

Получение пластической серы
Слайд 43

Получение пластической серы

Применение серы. Получение серной кислоты; В бумажной промышленности; в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника); в производстве красителей и светящихся составов; для получения черного (охотничьего) пороха; в производстве спичек; мази и присыпки д
Слайд 44

Применение серы

Получение серной кислоты; В бумажной промышленности; в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника); в производстве красителей и светящихся составов; для получения черного (охотничьего) пороха; в производстве спичек; мази и присыпки для лечения некоторых кожных заболеваний.

Аллотропные модификации углерода
Слайд 45

Аллотропные модификации углерода

Сравнительная характеристика
Слайд 46

Сравнительная характеристика

Применение аллотропных модификаций углерода. Алмаз – в промышленности: его используют для изготовления ножей, свёрл, резцов; в ювелирном деле. Перспектива – развитие микроэлектроники на алмазных подложках. Графит – для изготовления плавильных тиглей, электродов; наполнитель пластмасс; замедлитель не
Слайд 47

Применение аллотропных модификаций углерода

Алмаз – в промышленности: его используют для изготовления ножей, свёрл, резцов; в ювелирном деле. Перспектива – развитие микроэлектроники на алмазных подложках. Графит – для изготовления плавильных тиглей, электродов; наполнитель пластмасс; замедлитель нейтронов в ядерных реакторах; компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином) Фуллерен – в аккумуляторах и электрических батареях (добавки фуллерена); фармакология (лечение ВИЧ); солнечные элементы; огнезащитные краски. Карбин – фотоэлементы.

Спасибо за внимание
Слайд 48

Спасибо за внимание

Список похожих презентаций

Неорганические полимеры

Неорганические полимеры

НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп). ...
Неорганические и элементоорганические полимеры

Неорганические и элементоорганические полимеры

Неорганические полимеры. Неорганические полимеры – полимеры, которые имеют неорганические главные цепи и не содержат органических боковых радикалов. ...
Синтетические высокомолекулярные соединения и полимеры на их основе

Синтетические высокомолекулярные соединения и полимеры на их основе

Сегодня на уроке…. Общая характеристика синтетических высокомолекулярных соединений(ВМС). Полимеры. Происхождение полимеров. Способ получения полимеров. ...
Неорганические соединения. Периодическая таблица Д.И.Менделеева

Неорганические соединения. Периодическая таблица Д.И.Менделеева

Урок-конкурс по теме: «Неорганические соединения. Периодическая таблица Д.И.Менделеева». Цель: Закрепить полученные знания по основным классам неорганической ...
Неорганические соединения - формулы и реакции

Неорганические соединения - формулы и реакции

Цели урока. В игровой форме обобщить и закрепить знания о химических свойствах основных классов неорганических соединений и их взаимопревращениях. ...
Неорганические соединения

Неорганические соединения

Цель: Повторить и обобщить знания, умения и навыки по данной теме. Фронтальный опрос. Что такое степень окисления? Какие соединения называются бинарными? ...
Неорганические кислоты

Неорганические кислоты

Кислотный остаток. Задание классу. Прослушайте аудиозапись определения кислот. Ответьте на вопросы:. 1.В данном ряду найдите формулу кислоты. Поясните. ...
Неорганические и органические основания

Неорганические и органические основания

Цель урока: обобщение, систематизация и углубление знаний о составе, классификации и свойствах оснований. Основания - это…. Основания —это сложные ...
Неорганические вещества

Неорганические вещества

Цели урока:. Дать понятие о генетической связи неорганических соединений Изучить понятие генетических рядов металлов и неметаллов Повторить основные ...
Искусственные полимеры

Искусственные полимеры

Полимеры (от греч. поли — много и мерос — часть) — это высокомолекулярные, главным образом органические вещества (впрочем, известны и неорганические ...
Искусственные и синтетические полимеры

Искусственные и синтетические полимеры

Ответьте на вопросы. 1. Высокомолекулярные вещества, которые получают на основе природных полимеров путем их химической модификации называют…. Ответ. ...
Химическая организация клетки. Неорганические вещества

Химическая организация клетки. Неорганические вещества

Вещества клетки Неорганические Органические Вода Минеральные соли белки жиры углеводы. Элементы клетки микроэлементы биоэлементы макроэлементы H, ...
Химический состав клетки. Неорганические соединения

Химический состав клетки. Неорганические соединения

Что же до первоначал, то они еще больше имеют Средств для того, чтоб из них возникали различные вещи, Нет ни одной из вещей, доступных для нашего ...
Белки - природные полимеры

Белки - природные полимеры

Основные определения. Белки – это природные полимеры, обладающие высокими значениями молекулярной массы, молекулы которых построены из остатков аминокислот, ...
Высшие природные полимеры - Белки и Нуклеиновые кислоты

Высшие природные полимеры - Белки и Нуклеиновые кислоты

Цель урока: Закрепить и углубить представления учащихся о природных полимерах на примере белков и нуклеиновых кислот. Систематизировать знания о составе, ...
Полезная химия во фруктах и овощах

Полезная химия во фруктах и овощах

1 3 4 5 6 7 8 9 10 11 13 14. Химический состав сока во многом схож у различных видов этих фруктов: сок плодов содержит: сахара, органические кислоты, ...
Откуда ты, химия ?

Откуда ты, химия ?

Химические элементы. Роберт Бойль – впервые дал определение химического элемента. Джон Дальтон – впервые ввёл понятие атомного веса. А.М.Бутлеров ...
Органическая химия как наука

Органическая химия как наука

Содержание. Знакомство с историей возникновения науки органическая химия Органические вещества Схемы реакций Органическая химия Электронное строение ...
Органическая химия "Жиры"

Органическая химия "Жиры"

Рацион питания Белки Жиры Углеводы 2а, 2б 1 4б, 5. Роль жиров в здоровом питании спортсменов. Жиры хорошо усваиваются организмом, имеют высокую калорийность, ...
Органическая химия

Органическая химия

Органическая химия – химия углеводородов и их производных. Углеводороды (УВ) – простейшие органические вещества, молекулы которых состоят из атомов ...

Конспекты

Химический состав клеток. Неорганические соединения клетки

Химический состав клеток. Неорганические соединения клетки

Урок на тему. «Химический состав клеток. Неорганические соединения клетки». Цели урока:. Расширение и углубление знаний учащихся о роли металлов ...
Химическая организация клетки. Неорганические вещества

Химическая организация клетки. Неорганические вещества

Тема: «Химическая организация клетки. Неорганические вещества». Цели урока:. Образовательные. : сформировать знания о роли химических элементов, ...
Глюкоза, сахароза — важнейшие представители углеводов. Крахмал и целлюлоза — природные полимеры

Глюкоза, сахароза — важнейшие представители углеводов. Крахмал и целлюлоза — природные полимеры

Дата_____________ Класс_______________. Тема:. . Глюкоза, сахароза — важнейшие представители углеводов. Крахмал и целлюлоза — природные полимеры. ...
Галогены. Общая характристика неметаллов. Элементы VII А группы. Неорганические вещества и охрана окружающей среды

Галогены. Общая характристика неметаллов. Элементы VII А группы. Неорганические вещества и охрана окружающей среды

План учебного занятия № 16. Дата Предмет. химия. группа. Ф.И.О. преподавателя:. Кайырбекова И.А. . І. Тема занятия:. Галогены. Общая характристика ...
Белки- природные полимеры

Белки- природные полимеры

Муниципальное общеобразовательное бюджетное учреждение. «Средняя общеобразовательная школа №7г.Соль-Илецка». Оренбургской области. Конспект ...
Белки - органические полимеры

Белки - органические полимеры

Интегрированный урок химия- биология. . 9 класс. «Белки - органические полимеры». Мыслящий ум. . не чувствует себя счастливым,. . пока ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:10 октября 2018
Категория:Химия
Содержит:48 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации