- Многогранники вокруг нас

Презентация "Многогранники вокруг нас" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39

Презентацию на тему "Многогранники вокруг нас" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 39 слайд(ов).

Слайды презентации

«Многогранники вокруг нас или мы внутри многогранника». Государственное образовательное учреждение средняя общеобразовательная школа №574 с гимназическими классами и углубленным изучением информатики и информационных технологий. Автор: ученица 10 класса ГОУ СОШ №574 Дьяченко Мария
Слайд 1

«Многогранники вокруг нас или мы внутри многогранника»

Государственное образовательное учреждение средняя общеобразовательная школа №574 с гимназическими классами и углубленным изучением информатики и информационных технологий

Автор: ученица 10 класса ГОУ СОШ №574 Дьяченко Мария

«Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства.» Бертран Рассел
Слайд 2

«Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства.» Бертран Рассел

Цели работы: Познакомиться с многогранниками. Показать влияние правильных многогранников на возникновение философских теорий и гипотез. Показать связь геометрии и природы. Познакомиться с примерами применения многогранников в архитектуре и искусстве.
Слайд 3

Цели работы:

Познакомиться с многогранниками. Показать влияние правильных многогранников на возникновение философских теорий и гипотез. Показать связь геометрии и природы. Познакомиться с примерами применения многогранников в архитектуре и искусстве.

Содержание: Многогранники в природе. Историческая справка. Многогранники в искусстве. Многогранники в архитектуре.
Слайд 4

Содержание:

Многогранники в природе. Историческая справка. Многогранники в искусстве. Многогранники в архитектуре.

часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольн
Слайд 5

часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольников.

МНОГОГРАННИК

Правильные многогранники имеют красивые формы. Они являются удивительным символом симметрии, привлекавшим внимание выдающихся мыслителей. Этим и объясняется интерес человека к многогранникам.
Слайд 6

Правильные многогранники имеют красивые формы. Они являются удивительным символом симметрии, привлекавшим внимание выдающихся мыслителей. Этим и объясняется интерес человека к многогранникам.

Многогранники в природе. "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы". В книге немецкого биолога Э. Геккеля "Красота форм в природе" можно прочитат
Слайд 7

Многогранники в природе

"Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы".

В книге немецкого биолога Э. Геккеля "Красота форм в природе" можно прочитать такие строки:

По законам «строгой» архитектуры…. Пчёлы - удивительные создания. Пчелиные соты представляют собой пространственный паркет и заполняют пространство так, что не остается просветов. «Мой дом построен по законам самой строгой архитектуры. Сам Эвклид мог бы поучиться, познавая геометрию сот». Как не сог
Слайд 8

По законам «строгой» архитектуры…

Пчёлы - удивительные создания. Пчелиные соты представляют собой пространственный паркет и заполняют пространство так, что не остается просветов.

«Мой дом построен по законам самой строгой архитектуры. Сам Эвклид мог бы поучиться, познавая геометрию сот».

Как не согласиться с мнением пчелы из сказки «Тысяча и одна ночь»:

Простейшее животное. Скелет одноклеточного организма феодарии (Circogonia icosahedra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Он больше пох
Слайд 9

Простейшее животное

Скелет одноклеточного организма феодарии (Circogonia icosahedra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Он больше похоже на звёздчатый многогранник.

Из всех многогранников с тем же числом граней икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление толщи воды.

Интересно. Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, ч
Слайд 10

Интересно

Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.

Чудо природы – кристаллы. куб передает форму кристаллов поваренной соли NaCl монокристалл алюминиево-калиевых квасцов имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сернокислый натрий - тетраэдр, бор - икосаэдр. Правильные многогранники - самые выгодные фигуры. И при
Слайд 11

Чудо природы – кристаллы

куб передает форму кристаллов поваренной соли NaCl монокристалл алюминиево-калиевых квасцов имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сернокислый натрий - тетраэдр, бор - икосаэдр.

Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников:

Шеелит,5см, найден в Китае. (блочное строение кристалла), Геологические находки
Слайд 12

Шеелит,5см, найден в Китае. (блочное строение кристалла),

Геологические находки

Друза кристаллов кварца (горный хрусталь), 9см, найден на Урале.
Слайд 13

Друза кристаллов кварца (горный хрусталь), 9см, найден на Урале.

Гранаты: Андрадит и Гроссуляр ( найдены в бассейне реки Ахтаранда, Якутия)
Слайд 14

Гранаты: Андрадит и Гроссуляр ( найдены в бассейне реки Ахтаранда, Якутия)

История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удало
Слайд 15

История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства.

Историческая справка

Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знаком пифагорейцев была пентаграмма, на языке математики- это правильный невыпуклый или звездчатый пятиугольник. Пентаграмме присваивалось способность защищать человека от злых духов.

Пифагорейцы, а затем Платон полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды. Существование пяти правильных многогранников они относили к строению материи и Вселенной. Согласно этому мнению, атомы основных элементов должны иметь форму различных Платоновых тел:
Слайд 16

Пифагорейцы, а затем Платон полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды. Существование пяти правильных многогранников они относили к строению материи и Вселенной. Согласно этому мнению, атомы основных элементов должны иметь форму различных Платоновых тел:

Все использовали в своих философских теориях правильные многогранники. Дальнейшее развитие математики связано с именами Платона, Евклида, Архимеда, Кеплера
Слайд 18

Все использовали в своих философских теориях правильные многогранники.

Дальнейшее развитие математики связано с именами Платона, Евклида, Архимеда, Кеплера

Конструирование архимедова усеченного икосаэдра из платонова икосаэдра
Слайд 19

Конструирование архимедова усеченного икосаэдра из платонова икосаэдра

Двойственные многогранники. Куб и октаэдр находятся в положении двойственности друг другу, грани являются q-угольниками, р из которых примыкают к каждой вершине.
Слайд 20

Двойственные многогранники

Куб и октаэдр находятся в положении двойственности друг другу, грани являются q-угольниками, р из которых примыкают к каждой вершине.

Космологическая гипотеза Кеплера. Кеплер попытался связать со свойствами правильных многогранников некоторые свойства Солнечной системы. Он предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каж
Слайд 21

Космологическая гипотеза Кеплера

Кеплер попытался связать со свойствами правильных многогранников некоторые свойства Солнечной системы. Он предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр. Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна.

Многогранники в искусстве. «Поистине, живопись — наука и законная дочь природы, ибо она порождена природой» (Леонардо да Винчи)
Слайд 22

Многогранники в искусстве

«Поистине, живопись — наука и законная дочь природы, ибо она порождена природой» (Леонардо да Винчи)

Титан Возрождения, живописец, скульптор, ученый и изобретатель Леонардо да Винчи (1452-1519) — символ неразрывности искусства и науки, а следовательно, закономерен его интерес к таким прекрасным, высокосимметричным объектам, как выпуклые многогранники вообще и усеченный икосаэдр в частности. Изображ
Слайд 23

Титан Возрождения, живописец, скульптор, ученый и изобретатель Леонардо да Винчи (1452-1519) — символ неразрывности искусства и науки, а следовательно, закономерен его интерес к таким прекрасным, высокосимметричным объектам, как выпуклые многогранники вообще и усеченный икосаэдр в частности.

Изображения Леонардо да Винчи додекаэдра методом жестких ребер (а) и методом сплошных граней(б)

Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471- 1528), в известной гравюре «Меланхолия» на переднем плане изобразил додекаэдр.
Слайд 24

Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471- 1528), в известной гравюре «Меланхолия» на переднем плане изобразил додекаэдр.

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Голландский художник Мориц Корнилис Эшер (1898-1972)создал уникальные
Слайд 25

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов.

Голландский художник Мориц Корнилис Эшер (1898-1972)создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей.

На гравюре "Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.

Изящный пример звездчатого додекаэдра можно найти в его работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Наиболее интересная работа Эшера - гравю
Слайд 26

Изящный пример звездчатого додекаэдра можно найти в его работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором.

Наиболее интересная работа Эшера - гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры.

На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра. Форму додекаэдра, по мнению древних, имела ВСЕЛЕННАЯ , т.е. они считали, что мы живём внутри свода, имеющего форму поверхности правильного додекаэдра.
Слайд 27

На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра. Форму додекаэдра, по мнению древних, имела ВСЕЛЕННАЯ , т.е. они считали, что мы живём внутри свода, имеющего форму поверхности правильного додекаэдра.

Применения икосаэдров. Титульный лист книги Ж. Кузена «Книга о перспективе». Надгробный памятник в кафедральном соборе Солсбери.
Слайд 28

Применения икосаэдров

Титульный лист книги Ж. Кузена «Книга о перспективе».

Надгробный памятник в кафедральном соборе Солсбери.

Многогранники в архитектуре. Наука геометрия возникла из практических задач, ее предложения выражают реальные факты и находят многочисленные применения. Геометрия появляется всюду, где нужна хотя бы малейшая точность в определении формы и размеров.
Слайд 29

Многогранники в архитектуре

Наука геометрия возникла из практических задач, ее предложения выражают реальные факты и находят многочисленные применения. Геометрия появляется всюду, где нужна хотя бы малейшая точность в определении формы и размеров.

В III веке до н.э. был построен маяк, чтобы корабли могли благополучно миновать рифы на пути в александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днем - столб дыма. Это был первый в мире маяк, и простоял он 1500 лет. Фаросский маяк состоял из трех мраморных башен, стоявших н
Слайд 30

В III веке до н.э. был построен маяк, чтобы корабли могли благополучно миновать рифы на пути в александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днем - столб дыма. Это был первый в мире маяк, и простоял он 1500 лет

Фаросский маяк состоял из трех мраморных башен, стоявших на основании из массивных каменных блоков. Первая башня была прямоугольной, в ней находились комнаты, в которых жили рабочие и солдаты. Над этой башней располагалась меньшая, восьмиугольная башня со спиральным пандусом, ведущим в верхнюю башню. Верхняя башня формой напоминала цилиндр, в котором горел огонь, помогавший кораблям благополучно достигнуть бухты. На вершине башни стояла статуя Зевса Спасителя. Общая высота маяка составляла 117 метров.

Александрийский маяк

Царская гробница. Великая пирамида была построена как гробница Хуфу, известного грекам как Хеопс. Он был одним из фараонов, или царей древнего Египта, а его гробница была завершена в 2580 году до н.э. Позднее в Гизе было построено еще две пирамиды, для сына и внука Хуфу, а также меньшие по размерам
Слайд 31

Царская гробница

Великая пирамида была построена как гробница Хуфу, известного грекам как Хеопс. Он был одним из фараонов, или царей древнего Египта, а его гробница была завершена в 2580 году до н.э. Позднее в Гизе было построено еще две пирамиды, для сына и внука Хуфу, а также меньшие по размерам пирамиды для их цариц. Пирамида Хуфу, самая дальняя на рисунке, является самой большой. Пирамида его сына находится в середине и смотрится выше, потому что стоит на более высоком месте.

Многогранники в архитектуре Москвы. Собор непорочного зачатия Девы Марии на малой Грузинской. Исторический музей
Слайд 32

Многогранники в архитектуре Москвы

Собор непорочного зачатия Девы Марии на малой Грузинской

Исторический музей

Казанская церковь в Москве
Слайд 33

Казанская церковь в Москве

ЦУМ. Высотки. Котельники
Слайд 34

ЦУМ

Высотки. Котельники

Телеграф
Слайд 35

Телеграф

Малый Ржевский пер. Новоарбатский замок
Слайд 36

Малый Ржевский пер.

Новоарбатский замок

ул Пятницкая
Слайд 37

ул Пятницкая

Литература: - Энциклопедия для детей. Т. 11. Математика. – М: Аванта плюс, 2002. - Энциклопедия для детей. Я познаю мир.Математика. – М: Издательство АСТ, 1999. - Ворошилов А.В. Математика и искусство. - М. просвещение, 1992. – 352 - Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.
Слайд 38

Литература:

- Энциклопедия для детей. Т. 11. Математика. – М: Аванта плюс, 2002. - Энциклопедия для детей. Я познаю мир.Математика. – М: Издательство АСТ, 1999. - Ворошилов А.В. Математика и искусство. - М. просвещение, 1992. – 352 - Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994. - 495 с

Интернет ресурсы: http://www.nips.riss-telecom.ru/poly/ Мир многогранников http://www.sch57.msk.ru:8101/collect/smogl.htm История математики http://mschool.kubsu.ru/ Библиотека электронных учебных пособий http://www.ega-math.narod.ru/ Статьи по математике http://dondublon.chat.ru/math.htm Популярная
Слайд 39

Интернет ресурсы:

http://www.nips.riss-telecom.ru/poly/ Мир многогранников http://www.sch57.msk.ru:8101/collect/smogl.htm История математики http://mschool.kubsu.ru/ Библиотека электронных учебных пособий http://www.ega-math.narod.ru/ Статьи по математике http://dondublon.chat.ru/math.htm Популярная математика http://www.uic.ssu.samara.ru/~nauka/index.htm «В мире науки» http://www.mccme.ru/ Московский центр непрерывного математического образования http://mathc.chat.ru/ Математический калейдоскоп

Список похожих презентаций

Многогранники вокруг нас

Многогранники вокруг нас

Общий исторический обзор Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел наблюдал человек в природе: ...
Многогранники вокруг нас

Многогранники вокруг нас

Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, ...
Многогранники вокруг нас

Многогранники вокруг нас

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало, - ...
Замечательные кривые вокруг нас

Замечательные кривые вокруг нас

Спираль Архимеда. Спираль Архимеда - немного истории. Спираль Архимеда мы видим. Синусоида. Синусоида – немного истории. Синусоиду мы видим. Конхоида ...
Математика вокруг нас. Числа в загадках, пословицах и поговорках

Математика вокруг нас. Числа в загадках, пословицах и поговорках

Тип проекта: исследовательско-информационный. Цель: расширить представления о числах на материале устного народного творчества Задачи: Отбирать загадки, ...
Математика вокруг нас. Математика в строительстве

Математика вокруг нас. Математика в строительстве

В истории мы черпаем мудрость, в поэзии остроумие, а в математике – проницательность. Ф. Бэкон. Этимология. Слово «математика» произошло от др.-греч. ...
Математика вокруг нас

Математика вокруг нас

Математика. Экономика Сельское хозяйство Оборона страны Здоровье Архитектура Строительство …. МАТЕМАТИЧЕСКАЯ ВИКТОРИНА. Сколько граней у неочищенного ...
Математика вокруг нас

Математика вокруг нас

Руководитель проекта Учитель математики Владимирова А.П. 1. «Золотые мысли» -высказывания о математике. 2. Я.И.Перельман-великий популяризатор математики ...
Линейная функция и линейные уравнения вокруг нас

Линейная функция и линейные уравнения вокруг нас

1. Линейное уравнение с одной переменной 2. Алгоритм решения линейного уравнения. Примеры уравнений 3. Примеры решения задач с помощью линейных уравнений ...
Геометрия вокруг нас

Геометрия вокруг нас

Актуальность темы. Затруднение у учащихся в применении теоретических знаний по геометрии к решению практических задач. Цель курса. Развитие у учащихся ...
Геометрические фигуры вокруг нас

Геометрические фигуры вокруг нас

Цель. Где я могу видеть геометрические фигуры? Я знаю. Кривая линия. Прямая линия. Отрезок. Ломаная линия. Окружность, круг, шар. Овал:. Треугольник:. ...
Геометрические фигуры вокруг нас

Геометрические фигуры вокруг нас

Геометрия возникла очень давно, это одна из самых древних наук. В переводе с греческого слово «геометрия» означает «землемерие» («гео»- по-гречески ...
Геометрические тела вокруг нас

Геометрические тела вокруг нас

Цели и задачи. Формирование комплексного видения проблемы и ее решения Формирование навыков работы с информацией: поиск информации, ее творческая ...
Золотое сечение вокруг нас

Золотое сечение вокруг нас

Актуальность. 1. Увлекательная история «Божественной пропорции» 2.Всеобщий характер исследуемого материала 3.Познание законов гармонии и красоты. ...
Геометрия вокруг нас

Геометрия вокруг нас

«Я думаю, что никогда донастоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия.». Жан Ле Корбюзье. Нельзя быть математиком, ...
Координаты вокруг нас

Координаты вокруг нас

ЦЕЛЬ:. Углубить знания о координатах. Узнать кто создал координаты и зачем. Узнать при каких целях используются координаты. Собрать и приготовить ...
Геометрия вокруг нас

Геометрия вокруг нас

Вступление. В этой работе мы хотим показать,как важна геометрия в нашей жизни. Если осмотреться, то можно найти много геометрических фигур: квадраты, ...
Математика вокруг нас

Математика вокруг нас

Запомните все, что без точного счета Не сдвинется с места любая работа. Без счета не будет на улице света. Без счета не может подняться ракета Без ...
Геометрия вокруг нас. Пирамида

Геометрия вокруг нас. Пирамида

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему ...

Конспекты

Математика вокруг нас

Математика вокруг нас

ГБОУ СОШ № 654 имени А.Д. Фридмана. Конспект внеклассного занятия по математике для 2 класса. «Математика вокруг нас». подготовила. ...
Проценты вокруг нас

Проценты вокруг нас

Урок математики в 5 классе по теме «Проценты вокруг нас». Учитель математики МОУ «СОШ №13 г. Пугачева Саратовской области» Пухова Елена Ивановна. ...
Многоугольники вокруг нас: паркет

Многоугольники вокруг нас: паркет

Урок Многоугольники вокруг нас: паркет. Якшина Наталья Александровна. учитель математики, первая категория,. МБОУ «БСОШ №1», г. Александровск. ...
Геометрия вокруг нас

Геометрия вокруг нас

Разработала: Ильенко Анжела Владиславовна. Учитель начальных классов МБОУ СОШ №2 г. Стрежевого Томской области. Занятие для учеников 4х кл. по теме ...
Математика вокруг нас

Математика вокруг нас

Муниципальное общеобразовательное учреждение «Лихославльская средняя общеобразовательная школа №1». Интегрированный урок в 9классе «Математика ...
Математика вокруг нас

Математика вокруг нас

. Муниципальное бюджетное общеобразовательное учреждение. «Плехановская средняя общеобразовательная школа». Конспект внеклассного ...
Математика вокруг нас

Математика вокруг нас

Андриановская Людмила Ивановна,. учитель начальных классов. МБОУ «Первомайская сош». Тема: Математика вокруг нас. 1 класс. Задачи. :. . Образовательные:. ...
Дроби вокруг нас

Дроби вокруг нас

Урок математики в 5 классе « Дроби вокруг нас». Цели:. . Образовательные:. . сформировать способность записывать обыкновенные дроби в виде ...
Геометрия вокруг нас…

Геометрия вокруг нас…

Муниципальное бюджетное общеобразовательное учреждение. средняя общеобразовательная школа № 18. Кировский район городской округ город Уфа. . ...
Треугольники - вокруг нас

Треугольники - вокруг нас

Муниципальное образовательное учреждение. «средняя общеобразовательная школа №29». города братска иркутской области. . . Треугольники ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2018
Категория:Математика
Содержит:39 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации