» » » Решение текстовых задач «на работу»

Презентация на тему Решение текстовых задач «на работу»

Презентацию на тему Решение текстовых задач «на работу» можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации : Математика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 12 слайдов.

скачать презентацию

Слайды презентации

Слайд 1: Решение текстовых задач «на работу»
Слайд 1

Подготовка к ЕГЭ по математике

Решение текстовых задач «на работу»

Слайд 2: Решение текстовых задач «на работу»
Слайд 2

Результаты решения текстовых задач на ЕГЭ по математике.

Слайд 3: Решение текстовых задач «на работу»
Слайд 3

Особенности решения задач «на работу».

А=Р*t, где А-работа Р- производительность труда t- время Р=А/t t=А/Р Если в условии не дана вся работа, то её можно принять за 1 Общая производительность равна сумме производительностей.

Слайд 4: Решение текстовых задач «на работу»
Слайд 4
Пример 1

Для наполнения плавательного бассейна водой имеются три насоса. Первому насосу для наполнения бассейна требуется времени в три раза меньше, чем второму, и на 2 ч больше, чем третьему. Три насоса, работая вместе, наполнили бы бассейн за 3ч, но по условиям эксплуатации одновременно должны работать только два насоса. Определите минимальную стоимость наполнения бассейна, если 1ч работы любого из насосов стоит 140 рублей. Решение: Эту задачу удобно решать с помощью таблицы.

Слайд 5: Решение текстовых задач «на работу»
Слайд 5
Работа Время, час

Производительность

1 насос 2 насос 3 насос ВМЕСТЕ 1 X+2 3 X 3(х + 2) 1/X+2 1/3(X+2) 1/3 1/X
Слайд 6: Решение текстовых задач «на работу»
Слайд 6

Алгоритм решения задачи

1. Внесем в таблицу известные величины ( работу примем за 1) 2. Одну из неизвестных величин обозначим за х. 3. Остальные неизвестные величины выразим через х, используя условие задачи или формулы. . 4Составим уравнение. 5. Решим уравнение и ответим на главный вопрос задачи.

Слайд 7: Решение текстовых задач «на работу»
Слайд 7
Уравнение

1/х+2 + 1/3(х+2) + 1/х = 1/3 Решив уравнение, мы найдем х=6 6ч- время наполнения бассейна третьим насосом. Тогда время первого насоса 8ч, второго 24ч. Значит минимальное время работы двух насосов – это время работы 1 и3 насосов ,т.е. 14ч Определим минимальную стоимость наполнения бассейна двумя насосами. 140*14=1960(руб.) Ответ: 1960 руб.

Слайд 8: Решение текстовых задач «на работу»
Слайд 8
Реши сам!

Два маляра, работая вместе, могут за 1ч покрасить стену площадью 40 кв.м. Первый маляр, работая отдельно, может покрасить 50 кв. м стены на 4ч быстрее, чем второй покрасит 90 кв.м такой же стены. За сколько часов первый маляр сможет покрасит 100 кв. м стены? Ответ: 4ч

Слайд 9: Решение текстовых задач «на работу»
Слайд 9
Пример 2
Слайд 10: Решение текстовых задач «на работу»
Слайд 10
Пример 3

Бак заполняют керосином за 2часа 30 минут с помощью трех насосов, работающих вместе. Производительности насосов относятся как 3:5:8. Сколько процентов объёма будет заполнено за 1час 18 минут совместной работы второго и третьего насосов?

Слайд 11: Решение текстовых задач «на работу»
Слайд 11
Решение задачи

Так как объём бака не указан, то примем объём бака за 1. Пусть коэффициент пропорциональности равен х, тогда производительности насосов соответственно равны 3х, 5х, 8х. И время наполнения бака при совместной работе всех трех насосов равно 1/3х+5х+8х = 1/ 16х или, по условию задачи, 2ч 30 мин. Решим уравнение 1/16х = 2,5 Х =1/ 40 Производительность второго насоса равна 1/ 40 * 5 = 1/ 8 Производительность третьего насоса равна 1/ 40 * 8 = 1/ 5. Совместная производительность второго и третьего насосов равна 1/ 8 + 1/ 5 =13/40 За 1ч 30мин второй и третий насосы наполнят 13/ 40 * 78/ 60 = 13/ 40 * 1,3 = 16,9/ 40 = 0,4225 объёма бака. Итак, при совместной работе 2 и 3 насосов за 1ч 18 мин будет заполнено 0,4225 *100% =42,25% объёма бака.

Слайд 12: Решение текстовых задач «на работу»
Слайд 12
Реши сам !

Два фермера, работая вместе могут вспахать поле за 25 ч. Производительности труда первого и второго фермеров относятся как 2:5. Фермеры планируют работать поочередно. Сколько времени должен проработать второй фермер, чтобы это поле было вспахано за 45,5 ч? Ответ: 28 ч.

  • Яндекс.Метрика
  • Рейтинг@Mail.ru