- Три точки зрения на геометрию вселенной

Презентация "Три точки зрения на геометрию вселенной" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25

Презентацию на тему "Три точки зрения на геометрию вселенной" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 25 слайд(ов).

Слайды презентации

Муниципальное бюджетное образовательное учреждение Средняя общеобразовательная школа № 5. Руководитель: Сидько Светлана Николаевна Автор: ПИНСКИХ ЕЛЕНА ОЛЕГОВНА Ученица 10 класса. ТРИ ТОЧКИ ЗРЕНИЯ НА ГЕОМЕТРИЮ В С Е Л Е Н Н О Й. Направление: Геометрия. г.Лермонтов 2014
Слайд 1

Муниципальное бюджетное образовательное учреждение Средняя общеобразовательная школа № 5

Руководитель: Сидько Светлана Николаевна Автор: ПИНСКИХ ЕЛЕНА ОЛЕГОВНА Ученица 10 класса

ТРИ ТОЧКИ ЗРЕНИЯ НА ГЕОМЕТРИЮ В С Е Л Е Н Н О Й

Направление: Геометрия

г.Лермонтов 2014

Пространство. Какова его природа? Как оно связано с геометрией Вселенной? Или оно отделено от нее? Может оно есть лишь создание человеческого ума или ума божественного? Только наука может установить истинное строение пространства, а значит дает ответ, какой геометрией описывается его строение. Строе
Слайд 2

Пространство. Какова его природа? Как оно связано с геометрией Вселенной? Или оно отделено от нее? Может оно есть лишь создание человеческого ума или ума божественного? Только наука может установить истинное строение пространства, а значит дает ответ, какой геометрией описывается его строение.

Строение и развитие Вселенной всегда занимало ученых и будет их занимать. Вопросы мироздания ставились и решались наукой. Поэтому не удивительно, что к одному открытию одновременно подходили и физики и математики.

Объектом исследования моей работы является геометрия Вселенной. Предмет исследования – три вида пространства: евклидово пространство(плоская Вселенная) сферическое пространство(замкнутая Вселенная) Гиперболическое пространство(открытая Вселенная)
Слайд 3

Объектом исследования моей работы является геометрия Вселенной

Предмет исследования – три вида пространства: евклидово пространство(плоская Вселенная) сферическое пространство(замкнутая Вселенная) Гиперболическое пространство(открытая Вселенная)

Целью данной работы является: Сопоставить три точки зрения на геометрию Вселенной. В ходе работы решались следующие задачи: 1)Описать совпадения и отличия суждений ученых: Евклида, Лобачевского и Римана на геометрию Вселенной 2)Выяснить от чего зависит геометрия Вселенной 3)Установить, применимы ли
Слайд 4

Целью данной работы является: Сопоставить три точки зрения на геометрию Вселенной

В ходе работы решались следующие задачи: 1)Описать совпадения и отличия суждений ученых: Евклида, Лобачевского и Римана на геометрию Вселенной 2)Выяснить от чего зависит геометрия Вселенной 3)Установить, применимы ли к сферическому и гиперболическому пространству теоремы обыкновенной геометрии, которую мы учим в школе?

Евклид -греческий математик, живший в IV-III веках до нашей эры. В каждой науке наступает время, когда необходимо собрать воедино всё уже известное и из отдельных частей построить здание. Таким строителем в геометрии стал Евклид. Он поставил своей задачей найти законы, которым подчиняются все линии
Слайд 5

Евклид -греческий математик, живший в IV-III веках до нашей эры.

В каждой науке наступает время, когда необходимо собрать воедино всё уже известное и из отдельных частей построить здание. Таким строителем в геометрии стал Евклид. Он поставил своей задачей найти законы, которым подчиняются все линии и тела в природе, и расположить эти законы в стройной системе.

Основные требования (постулаты), аксиомы, которым должны подчиняться элементы или первоначальные допущения, на которых строится вся геометрия, были: 5. И чтобы всякий раз, как прямая, пересекая две прямые, образует с ними внутренние односторонние углы, составляющие вместе менее дух прямых, эти прямы
Слайд 6

Основные требования (постулаты), аксиомы, которым должны подчиняться элементы или первоначальные допущения, на которых строится вся геометрия, были:

5. И чтобы всякий раз, как прямая, пересекая две прямые, образует с ними внутренние односторонние углы, составляющие вместе менее дух прямых, эти прямые при неограниченном продолжении пересеклись с той стороны, с которой эти углы составляют менее двух прямых.

4. И чтобы все прямые углы были друг другу равны.

3. И чтобы из любого центра можно было описать окружность любого радиуса.

2. И чтобы ограниченную прямую можно было непрерывно продолжать по прямой.

1. Чтобы от каждой точки к каждой точке можно было провести прямую.

Николай Иванович Лобачевский (1792-1856), российский математик. Однако, в 19 веке нашим соотечественником - Николаем Ивановичем Лобачевским была создана новая, удивительная геометрия. Он утверждал, что геометрия Евклида справедлива для сравнительно небольших расстояний одной Солнечной системы с одно
Слайд 7

Николай Иванович Лобачевский (1792-1856), российский математик.

Однако, в 19 веке нашим соотечественником - Николаем Ивановичем Лобачевским была создана новая, удивительная геометрия.

Он утверждал, что геометрия Евклида справедлива для сравнительно небольших расстояний одной Солнечной системы с однородной массой и кривизной пространства, равной нулю, то есть связал геометрию с физикой. Он рассмотрел пространство с отрицательной кривизной, и поэтому геометрию Лобачевского называют гиперболической.

Георг Фридрих Бернхард Риман, немецкий математик (1826 - 1866). Несколько отличное направление предложил немецкий математик Бернхард Риман, который выдвинул ряд новых идей геометрии на поверхности. Риман целиком пересмотрел основы геометрии Евклида, вместо них предложил свои собственные принципы пос
Слайд 8

Георг Фридрих Бернхард Риман, немецкий математик (1826 - 1866)

Несколько отличное направление предложил немецкий математик Бернхард Риман, который выдвинул ряд новых идей геометрии на поверхности. Риман целиком пересмотрел основы геометрии Евклида, вместо них предложил свои собственные принципы построения геометрии. В отличие от Лобачевского, Риман описывает свою геометрию словесно, без всяких математических выкладок. Примером пространства Римана может служить шаровая сфера, то есть пространство замкнутое.

Попробую показать, что представляют собой эти три пространства: евклидова плоскость, сфера и гиперболическое пространство. Я думаю, что любому человеку, изучавшему геометрию в школе, не составит труда представить евклидову плоскость: представьте, что стол, за которым вы сидите, простирается до беско
Слайд 9

Попробую показать, что представляют собой эти три пространства: евклидова плоскость, сфера и гиперболическое пространство. Я думаю, что любому человеку, изучавшему геометрию в школе, не составит труда представить евклидову плоскость: представьте, что стол, за которым вы сидите, простирается до бесконечных размеров. Сферические предметы также окружают нас повсюду: возьмите воздушный шар, глобус, футбольный мяч.

В работе “Предел Круга III ” красные, зеленые, синие и желтые рыбы составляют мозаику их мира в созвучии треугольников и квадратов. В работе “Предел Круга IV” ангелы и демоны заключены в гиперболической троице, остальная плоскость заполнена шестиугольниками и восьмиугольниками. “Предел Круга III” “П
Слайд 10

В работе “Предел Круга III ” красные, зеленые, синие и желтые рыбы составляют мозаику их мира в созвучии треугольников и квадратов. В работе “Предел Круга IV” ангелы и демоны заключены в гиперболической троице, остальная плоскость заполнена шестиугольниками и восьмиугольниками.

“Предел Круга III” “Предел Круга IV”

Но что такое гиперболическая поверхность, понять гораздо сложнее, чем вообразить сферу. Один способ изобразить эту загадочную поверхность был обнаружен великим французским математиком Анри Пуанкаре. В диске Пуанкаре гиперболическая поверхность смоделирована в круге.

Модель Диска Пуанкаре

Давайте посмотрим на обычный футбольный мяч, и представим себе его в каждом пространстве. Мяч составлен из шестиугольников и пятиугольников: ряды белых шестиугольников окружает меньшее число черных пятиугольников. Это пример пространства Римана. Попытаемся представить его на евклидовой плоскости. Но
Слайд 11

Давайте посмотрим на обычный футбольный мяч, и представим себе его в каждом пространстве. Мяч составлен из шестиугольников и пятиугольников: ряды белых шестиугольников окружает меньшее число черных пятиугольников. Это пример пространства Римана.

Попытаемся представить его на евклидовой плоскости. Но здесь мы сможем изобразить поверхность, состоящую только из шестиугольников (классический образец улья). Это пример Евклидова пространства.

На плоскости каждый шестиугольник (то есть фигура, которая имеет шесть сторон), окружен шестью другими, и они все сложены вместе и точно заполняют плоскость.

Теперь, вместо замыкания в сферу поверхность раскрывается: появляется избыток поверхности. Эффект этот подобен тому, что мы видим в листьях салата и некоторых типах водорослей, где растительная поверхность расширяется от середины листа. Это пример пространства Лобачевского. Существует несколько разл
Слайд 12

Теперь, вместо замыкания в сферу поверхность раскрывается: появляется избыток поверхности. Эффект этот подобен тому, что мы видим в листьях салата и некоторых типах водорослей, где растительная поверхность расширяется от середины листа. Это пример пространства Лобачевского.

Существует несколько различных вариантов изображения гиперболического пространства:

Так гиперболическую поверхность воспроизвел на компьютере математик Джеффри Викс.

Компьютерная модель гиперболической поверхности Викса

Гиперболические складки мантии морского молюсска. Естественные примеры гиперболической геометрии математики видят в листьях салата и водорослей, а также в мантиях морских моллюсков. Оригинальный способ представления гиперболической поверхности изобрела математик Корнуэльского университета Дайна Тайм
Слайд 13

Гиперболические складки мантии морского молюсска

Естественные примеры гиперболической геометрии математики видят в листьях салата и водорослей, а также в мантиях морских моллюсков

Оригинальный способ представления гиперболической поверхности изобрела математик Корнуэльского университета Дайна Таймина – с помощью вязания.

Вязаная модель гиперболической поверхности

Вернемся к сфере. Если плоскую фигуру поместить на сферу, то полного соприкосновения не будет, так как кривизна у них различная. Кривизна плоских фигур равна нулю. Отрезанная от сферы круглая «шапочка» при распластывании на плоскости разрывается точно так же, как выпуклый кусочек кренделя. Значит, д
Слайд 14

Вернемся к сфере. Если плоскую фигуру поместить на сферу, то полного соприкосновения не будет, так как кривизна у них различная. Кривизна плоских фигур равна нулю. Отрезанная от сферы круглая «шапочка» при распластывании на плоскости разрывается точно так же, как выпуклый кусочек кренделя. Значит, длина окружности круга на сфере меньше длины окружности плоского круга, имеющего такой же радиус. Поэтому говорят, что сфера имеет постоянную положительную кривизну.

Гиперболическая поверхность. Если же вырезать круг из гиперболической поверхности, то при распластывании он будет сморщиваться и накладываться сам на себя. Значит, его площадь больше площади плоского круга того же радиуса. Говорят, что гиперболическая поверхность имеет постоянную отрицательную криви
Слайд 15

Гиперболическая поверхность

Если же вырезать круг из гиперболической поверхности, то при распластывании он будет сморщиваться и накладываться сам на себя. Значит, его площадь больше площади плоского круга того же радиуса. Говорят, что гиперболическая поверхность имеет постоянную отрицательную кривизну.

Итак, теперь мы знаем, что представляют собой возможные типы поверхностей: евклидова плоскость, сфера и гиперболическая поверхность. Но применимы ли к последним двум поверхностям теоремы обыкновенной стереометрической геометрии, которую мы учим в школе? На первый взгляд, применимы. Между тем, если п
Слайд 16

Итак, теперь мы знаем, что представляют собой возможные типы поверхностей: евклидова плоскость, сфера и гиперболическая поверхность. Но применимы ли к последним двум поверхностям теоремы обыкновенной стереометрической геометрии, которую мы учим в школе? На первый взгляд, применимы. Между тем, если присмотреться к сфере и гиперболической поверхности внимательнее - а для этого подойдёт обыкновенный глобус и вязаная модель, - легко обнаружить немало удивительного.

Рассмотрим пятый постулат Евклида, который определяет условия параллельности линий. Проведем прямую и возьмем точку, не лежащую на этой прямой. Теперь проведем прямую через точку. Каков результат? Пятый постулат Евклида говорит, что есть только одна прямая, которую можно провести через точку, котора
Слайд 17

Рассмотрим пятый постулат Евклида, который определяет условия параллельности линий. Проведем прямую и возьмем точку, не лежащую на этой прямой.

Теперь проведем прямую через точку. Каков результат? Пятый постулат Евклида говорит, что есть только одна прямая, которую можно провести через точку, которая никогда не будет пересекать первоначальную. Все другие линии отклонились бы относительно первоначальной линии и в конечном итоге пересекли бы ее. Мы говорим, что параллельные линии не пересекаются. Это кажется неоспоримым. Но Лобачевский и Риман предложили опровержение этого постулата.

При пересечении сферы её диаметральными, проходящими через центр, плоскостями образуются большие окружности, которым отводится роль прямых в сферической геометрии (на глобусе это экватор и меридианы). В отличие от обычной геометрии любые две сферические прямые пересекаются в двух диаметрально против
Слайд 18

При пересечении сферы её диаметральными, проходящими через центр, плоскостями образуются большие окружности, которым отводится роль прямых в сферической геометрии (на глобусе это экватор и меридианы). В отличие от обычной геометрии любые две сферические прямые пересекаются в двух диаметрально противоположных точках - на сфере отсутствует само понятие параллельности. Другое существенное отличие прямой на сфере от прямой на плоскости заключается в том, что сферическая прямая замкнута: двигаясь по ней всё время в одну сторону, мы в конце концов вернёмся в исходную точку. То есть точка не разбивает сферическую прямую на две части, подобные лучам обычной прямой.

Прямые на гиперболической поверхности. Если мы возьмем гиперболическую поверхность и проведем на ней прямую линию, то она также как и на сфере не будет восприниматься как прямая на плоскости. Она будет казаться очень сильно искривленной, но можно проверить, что это не соответствует действительности.
Слайд 19

Прямые на гиперболической поверхности

Если мы возьмем гиперболическую поверхность и проведем на ней прямую линию, то она также как и на сфере не будет восприниматься как прямая на плоскости. Она будет казаться очень сильно искривленной, но можно проверить, что это не соответствует действительности. Так, желтые линии в модели, изогнутые на вид, на самом деле представляют собой прямые.

Из школьной программы мы знаем, что сумма углов треугольника всегда равна 180 градусов. Это верно на евклидовой плоскости, но это не верно на сфере или на гиперболической поверхности. Многие свойства сферического треугольника почти дословно повторяют свойства обычного треугольника, например, три при
Слайд 21

Из школьной программы мы знаем, что сумма углов треугольника всегда равна 180 градусов. Это верно на евклидовой плоскости, но это не верно на сфере или на гиперболической поверхности. Многие свойства сферического треугольника почти дословно повторяют свойства обычного треугольника, например, три признака равенства треугольников. Но однако, на сфере, сумма внутренних углов треугольника всегда больше чем 180 градусов, поэтому треугольник на сфере может иметь сразу три прямых угла, если, например, он ограничен двумя перпендикулярными меридианами и экватором.

Треугольник на гиперболической поверхности. На гиперболической поверхности сумма углов треугольника меньше, чем 180 градусов. Кроме того, с увеличением длины сторон, углы треугольника будут уменьшаться. А если вершины треугольника бесконечно далеко удалить друг от друга для создания наибольшего треу
Слайд 22

Треугольник на гиперболической поверхности

На гиперболической поверхности сумма углов треугольника меньше, чем 180 градусов. Кроме того, с увеличением длины сторон, углы треугольника будут уменьшаться. А если вершины треугольника бесконечно далеко удалить друг от друга для создания наибольшего треугольника, углы будут стремиться к нулевой величине!

На основании результатов сопоставления трех различных точек зрения на геометрию Вселенной мы пришли к следующим выводам: а) если в геометрии Евклида через точку не лежащую на данной прямой , можно провести только одну прямую, параллельную данной, а в геометрии Лобачевского – две и более, то в геомет
Слайд 24

На основании результатов сопоставления трех различных точек зрения на геометрию Вселенной мы пришли к следующим выводам: а) если в геометрии Евклида через точку не лежащую на данной прямой , можно провести только одну прямую, параллельную данной, а в геометрии Лобачевского – две и более, то в геометрии Римана вовсе не существует параллельных прямых. б) Сумма углов треугольника в геометрии Евклида равна 180 градусов, у Лобачевского она всегда меньше 180 градусов, а в геометрии Римана эта сумма всегда больше 180 градусов.

Результаты в ходе данного исследования так же показали, будущее Вселенной зависит от ее геометрии: Если Вселенная имеет сферическую геометрию, то она в конце концов будет сжиматься. 2. Если ее геометрия гиперболическая, то расширение будет продолжаться вечно. Если же геометрия Вселенной евклидова, т
Слайд 25

Результаты в ходе данного исследования так же показали, будущее Вселенной зависит от ее геометрии: Если Вселенная имеет сферическую геометрию, то она в конце концов будет сжиматься. 2. Если ее геометрия гиперболическая, то расширение будет продолжаться вечно. Если же геометрия Вселенной евклидова, то она тоже будет вечно расширяться, но скорость расширения будет стремиться к нулю. Споры о том, что представляет Вселенная: евклидово пространство (плоская Вселенная), сферическое пространство (замкнутая Вселенная) или гиперболическое (открытая Вселенная) не разрешены до настоящего времени.

С П А С И Б О З А В Н И М А Н И Е !

Список похожих презентаций

А Какую геометрию знаешь ты?

А Какую геометрию знаешь ты?

План презентации: Краткие биографические данные Основные виды геометрии Геометрия Евклида Геометрия Лобачевского Геометрия Римана Применение Всех ...
"Разрезание геометрических фигур на части"

"Разрезание геометрических фигур на части"

ЗАДАЧИ НА РАЗРЕЗАНИЯ. Теорема Бойяи-Гервина гласит: любой многоугольник можно так разрезать на части, что из этих частей удастся сложить квадрат. ...
Введение в геометрию

Введение в геометрию

Геометрия – это наука о свойствах геометрических фигур. Слово «Геометрия»- греческое, в переводе на русский язык означает «землемерие». За несколько ...
Введение в геометрию

Введение в геометрию

А В. Точка — элементарная геометрическая фигура. Точка не имеет размера. АВ — отрезок ВА — отрезок Через любые две точки можно построить только один ...
Введение в геометрию

Введение в геометрию

. На рисунке дан план города. Среди нарисованных линий укажите прямые,отрезки. лучи. Какие лучи являются допол-нительными друг к другу? Какие из точек ...
Введение в геометрию

Введение в геометрию

оглавление. История возникновения геометрии. Что это такое –геометрия ? Геометрические фигуры. Учёные-геометры. Точка, прямая, отрезок. Взаимное расположение ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...
Ведение в геометрию

Ведение в геометрию

Школа Пифагора. Одной из самых первых и самых известных школ была пифагорейская (VI-V вв. до н.э.), названная так в честь своего основателя Пифагора. ...
Астрономия на координатной плоскости

Астрономия на координатной плоскости

Цели урока:. Закрепить полученные знания и навыки. Проявить творчество при изучении данного раздела. Избежать трудностей при изучении темы «Функция» ...
Арифметика Л.Ф. Магницкого. Задачи на сплавы и смеси

Арифметика Л.Ф. Магницкого. Задачи на сплавы и смеси

Цели моей работы. Познакомиться с биографией Леонтия Филипповича Магницкого Научиться решать задачи на сплавы, находить процентное содержание веществ ...
Анализ контрольной работы по математике на тему "Натуральные числа и шкалы"

Анализ контрольной работы по математике на тему "Натуральные числа и шкалы"

Натуральные числа и шкалы. 5 к л а с с № 1. Цели деятельности учителя. Главная дидактическая цель : организовать деятельность учащихся, направленную ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Виды. Количество видов на чертежах

Виды. Количество видов на чертежах

Вид – это изображение обращенной к наблюдателю видимой части поверхности предмета. Определение:. . 1. Вид спереди – главный вид (размещается на месте ...
Взаимное расположение прямой и окружности на плоскости

Взаимное расположение прямой и окружности на плоскости

Прямая и окружность пересекаются. d R. d- расстояние от центра окружности до прямой R- радиус окружности. О А В d. Прямая и окружность касаются. d=R. ...
«Моя математика» - задачи на нахождение целого или части

«Моя математика» - задачи на нахождение целого или части

МАТЕМАТИКА 1 3 4 5 7 6 8 9 0. Работа с числовым рядом. http://www.bajena.com/ru/kids/mathematics/sum-mathematics.php. 1. Прочитайте текст справа и ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
Авария на промышленном объекте

Авария на промышленном объекте

Цели урока:. Повторить материал по темам “ Площади криволинейных трапеций”, “Решение показательных уравнений”, выявить пробелы в знаниях и постараться ...
«Задания на проценты»

«Задания на проценты»

Пусть каждый день и каждый час Вам новое добудет. Пусть добрым будет ум у Вас, А сердце умным будет. (С. Маршак). Цели урока:. повторить содержание ...
3 вида разложение многочлена на множители

3 вида разложение многочлена на множители

1 вид вынесение общего множителя за скобки. Что значит разложить многочлен на множители? Разложить многочлен на множители — это значит представить ...
«Старая сказка на новый лад»

«Старая сказка на новый лад»

3 268 :2 12 396:3 256 130:5 1634 51226. Полетели стрелы в разные стороны. Упала стрела царевича на царский двор. 1634 м. Стрела второго царевича улетела ...

Конспекты

Действия с десятичными дробями. Умножение и деление десятичной дроби на натуральное число

Действия с десятичными дробями. Умножение и деление десятичной дроби на натуральное число

Урок математики в 5 классе. Автор -Ставская Валентина Владимировна,. . учитель математики и информатики. . МБОУ Кагальницкой СОШ№1 Ростовской ...
Вычисление площадей фигур на клетчатой бумаге. Формула Пика

Вычисление площадей фигур на клетчатой бумаге. Формула Пика

Урок геометрии в 8 классе по теме «Вычисление площадей фигур на клетчатой бумаге. Формула Пика.». (Методические рекомендации). Учитель. Берестова ...
Две основные задачи на дроби

Две основные задачи на дроби

. Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа № 8». Методическая разработка урока математики . ...
Внетабличное деление двузначногочисла на однозначное

Внетабличное деление двузначногочисла на однозначное

«Внетабличное деление двузначного числа на однозначное». Цели:. Образовательная. : формировать умение выполнять внетабличное деление двузначных ...
Вычисление площадей фигур на клетчатой бумаге

Вычисление площадей фигур на клетчатой бумаге

Фрагмент урока по теме:. . Вычисление площадей фигур на клетчатой бумаге. . . Цель :. . c. истематизация знаний по нахождению площадей геометрических ...
Виды углов. Умножение и деление двузначного числа на однозначное

Виды углов. Умножение и деление двузначного числа на однозначное

Павлодарская область. Актогайский район. . с.Барлыбай. . . Енбекшинская средняя школа. Тема:. . «Виды углов. Умножение и деление двузначного. ...
Вместе весело шагать на экзамен

Вместе весело шагать на экзамен

КОУ ВО «ТАЛОВСКАЯ ШКОЛА-ИНТЕРНАТ ДЛЯ ДЕТЕЙ-СИРОТ И ДЕТЕЙ, ОСТАВШИХСЯ БЕЗ ПОПЕЧЕНИЯ РОДИТЕЛЕЙ». 9 КЛАСС. ПРИГОТОВИЛИ : Гриценко Р.А. Носова ...
Векторы на плоскости

Векторы на плоскости

. Конспект. обобщающего урока по теме «Векторы на плоскости». . (геометрия 9 класс). Тема. Систематизация и обобщение изученного материала ...
Больше на некоторое число

Больше на некоторое число

Тема:. Больше на некоторое число. Тип урока:. урок изучения нового материала и первичного закрепления. Цель:. познакомить учащихся с возможностью ...
Астрономия на координатной плоскости

Астрономия на координатной плоскости

Леткова Татьяна Викторовна,. учитель математики. Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:27 апреля 2019
Категория:Математика
Содержит:25 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации