- Построение двумерной флаговой геометрии на основе системы аксиом Вейля

Презентация "Построение двумерной флаговой геометрии на основе системы аксиом Вейля" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14

Презентацию на тему "Построение двумерной флаговой геометрии на основе системы аксиом Вейля" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 14 слайд(ов).

Слайды презентации

Построение двумерной флаговой геометрии на основе системы аксиом Вейля
Слайд 1

Построение двумерной флаговой геометрии на основе системы аксиом Вейля

Содержание: Эпиграф Вступление Биография Германа Вейля Система аксиом Вейля аффинной и евклидовой геометрии на плоскости Аксиоматика Вейля флаговой двумерной геометрии Свойства векторов флаговой плоскости Измерение отрезков и углов Элементы тригонометрии Движение флаговой плоскости Принцип двойствен
Слайд 2

Содержание:

Эпиграф Вступление Биография Германа Вейля Система аксиом Вейля аффинной и евклидовой геометрии на плоскости Аксиоматика Вейля флаговой двумерной геометрии Свойства векторов флаговой плоскости Измерение отрезков и углов Элементы тригонометрии Движение флаговой плоскости Принцип двойственности для флаговой плоскости Заключение Список используемой литературы

Биография Германа Вейля. Герман Клаус Хуго Вейль (9.XI.1885 - 8.XII.1955). Родился в Эльмсхорне (Германия). В 1908 г. окончил Геттингенский университет, в том же году защитил диссертацию и получил степень доктора философии. С 1908 до 1913 г. читал лекции в Геттингенском университете в качестве прива
Слайд 3

Биография Германа Вейля

Герман Клаус Хуго Вейль (9.XI.1885 - 8.XII.1955). Родился в Эльмсхорне (Германия). В 1908 г. окончил Геттингенский университет, в том же году защитил диссертацию и получил степень доктора философии. С 1908 до 1913 г. читал лекции в Геттингенском университете в качестве приват-доцента. С 1913 по 1930 г. - профессор Цюрихского политехнического института. В 1930 - 1933 гг. работает в Геттингенском университете, а с 1933 по 1955 г. - в Принстонском институте перспективных исследований (США). Исследования относятся к теории групп, дифференциальной геометрии, теории интегральных и дифференциальных уравнений, математической логике, основаниям математики, квантовой механике, теории относительности. Международная премия имени Н.И.Лобачевского присуждена в 1927 году за цикл работ по геометрии и теории линейных представлений групп.

Математика играет весьма существенную роль в формировании нашего духовного облика. Занятие математикой – подобно мифотворчеству, литературе или музыке – это одна из наиболее присущих человеку областей его творческой деятельности, в которой проявляется его человеческая сущность, стремление к интеллек
Слайд 4

Математика играет весьма существенную роль в формировании нашего духовного облика. Занятие математикой – подобно мифотворчеству, литературе или музыке – это одна из наиболее присущих человеку областей его творческой деятельности, в которой проявляется его человеческая сущность, стремление к интеллектуальной сфере жизни, являющейся одним из проявлений мировой гармонии. Герман Вейль

Вступление. Геометрия, которую изучают в школе, называется евклидовой — по имени геометра, который изложил ее в виде единой логической системы. Великий русский математик Николай Иванович Лобачевский впервые (в 1826 году) обратил внимание на то, что геометрическая система не является чем-либо незыбле
Слайд 5

Вступление

Геометрия, которую изучают в школе, называется евклидовой — по имени геометра, который изложил ее в виде единой логической системы. Великий русский математик Николай Иванович Лобачевский впервые (в 1826 году) обратил внимание на то, что геометрическая система не является чем-либо незыблемым, что ее можно, в случае необходимости, изменить. В результате получится новая геометрическая система, которая ничуть не уступит по своей логической законченности, по научной строгости своего построения, привычной всем нам, евклидовой геометрии. Первую неевклидову геометрию построил Н. И. Лобачевский. После Лобачевского были созданы и многие другие неевклидовы геометрические системы. По сравнению с системой аксиом Д. Гильберта точечно-векторная аксиоматика Г. Вейля (1917) не только позволяет гораздо проще построить евклидову геометрию, но и дает возможность вполне естественным образом построить многие из неевклидовых геометрий.

Система аксиом Вейля аффинной и евклидовой геометрии на плоскости. Основными объектами геометрии в аксиоматике Вейля являются точка и вектор, а основными отношениями — сумма векторов, произведение вектора на число, откладывание вектора от точки, скалярное произведение векторов. Свойства каждого из э
Слайд 6

Система аксиом Вейля аффинной и евклидовой геометрии на плоскости

Основными объектами геометрии в аксиоматике Вейля являются точка и вектор, а основными отношениями — сумма векторов, произведение вектора на число, откладывание вектора от точки, скалярное произведение векторов. Свойства каждого из этих отношений описываются соответствующей группой аксиом. Все аксиомы делятся на пять групп: I группа. Аксиомы сложения векторов II группа. Аксиомы умножения вектора на действительное число III группа. Аксиомы размерности IV группа. Аксиомы откладывания вектора от точки V группа. Аксиомы скалярного произведения Аксиомы первых трех групп определяют двумерное линейное (или векторное) пространство. Аксиомы первых четырех групп определяют двумерное аффинное пространство. Аксиомами всех пяти групп определяется двумерное евклидово пространство. Таким образом, евклидова геометрия строится на базе аффинной путем введения метрики (меры длины и меры угла) с помощью скалярного произведения векторов. Наоборот, содержание аффинной геометрии можно получить, удаляя из евклидовой геометрии все факты, касающиеся измерения отрезков и углов, в частности перпендикулярность прямых. Важными аффинными понятиями являются параллельность прямых и отношение коллинеарных векторов.

Аксиоматика Вейля флаговой двумерной геометрии. Оставим без изменения все аксиомы Вейля евклидовой геометрии, кроме аксиомы V5 , которую заменим аксиомой: V5 *. Существует хотя бы один ненулевой вектор , скалярный квадрат которого равен нулю ( 2= 0 при ≠ ). Существует хотя бы один вектор , скалярный
Слайд 7

Аксиоматика Вейля флаговой двумерной геометрии

Оставим без изменения все аксиомы Вейля евклидовой геометрии, кроме аксиомы V5 , которую заменим аксиомой: V5 *. Существует хотя бы один ненулевой вектор , скалярный квадрат которого равен нулю ( 2= 0 при ≠ ). Существует хотя бы один вектор , скалярный квадрат которого положителен. Полученная система аксиом I, II, III, IV, V1-4 , V5 * определяет новую геометрию, называемую флаговой, или полуевклидовой, а также геометрией Галилея. Однако название «геометрия Галилея» исторически неправильно: Галилей не знал этой геометрии, поскольку сама идея существования неевклидовых геометрий возникла гораздо позже и связана с появлением на свет геометрии Лобачевского, а подробная разработка флаговой геометрии относится только к 50-м годам текущего столетия. Название «геометрия Галилея» оправдывается тем, что она связана с принципом относительности Галилея, который гласит: никакие механические эксперименты, производимые внутри физической системы, не могут позволить обнаружить равномерное и прямолинейное движение этой системы. Название «флаговая геометрия» связано с понятием абсолюта, введением которого заниматься не будем, так как в нашем изложении это понятие не используется. Сразу подчеркнем, что флаговая геометрия строится на базе аффинной, поэтому все аффинные понятия и теоремы имеют место и во флаговой геометрии (например, теорема о медианах треугольника, теорема о средней линии трапеции и др.).

Свойства векторов флаговой плоскости. Как выяснится в дальнейшем, свойства векторов флаговой плоскости существенно отличаются от свойств векторов евклидовой плоскости. Определение. Ненулевые векторы, скалярные квадраты которых равны нулю, называются изотропными векторами. Теорема 1. Два вектора, оди
Слайд 8

Свойства векторов флаговой плоскости

Как выяснится в дальнейшем, свойства векторов флаговой плоскости существенно отличаются от свойств векторов евклидовой плоскости. Определение. Ненулевые векторы, скалярные квадраты которых равны нулю, называются изотропными векторами. Теорема 1. Два вектора, один из которых изотропный, а другой неизотропный, линейно независимы. Теорема 2. Вектор, коллинеарный изотропному вектору, является изотропными. Определение. Два вектора называют ортогональными, если их скалярное произведение равно нулю. Ортогональность векторов будем обозначать знаком . Понятие коллинеарных векторов в смысле флаговой геометрии совпадает с этим понятием в евклидовом (и аффинном) смысле. Однако ортогональные векторы в смысле флаговой геометрии нельзя представлять себе в виде евклидово-ортогональных. Теорема 3. Ортогональные векторы существуют. Теорема 4. Два вектора, один из которых изотропный, а другой неизотропный, ортогональны. Теорема 5. Все изотропные векторы коллинеарны. Из теорем 2 и 5 вытекает Следствие. Всякие два изотропных вектора ортогональны. Теорема 6. Любые два неизотропных ненулевых вектора неортогональны. На основании теорем 4, 6 и предыдущего следствия имеем Следствие. Всякому вектору ортогонален изотропный и только изотропный вектор.

Измерение отрезков и углов. Нажав на эту ссылку Вы сможете увидеть содержание данной главы. измерение отрезков и углов
Слайд 9

Измерение отрезков и углов

Нажав на эту ссылку Вы сможете увидеть содержание данной главы. измерение отрезков и углов

Элементы тригонометрии. Рассмотрим аналоги теорем косинусов, синусов и вопрос о площади треугольника. Пусть ABC — треугольник с неизотропными сторонами. Используя соотношение (5) получаем, что либо с = a – b, либо с = b – a, либо c = a ± b. Таким образом, во всяком треугольнике с неизотропными сторо
Слайд 10

Элементы тригонометрии

Рассмотрим аналоги теорем косинусов, синусов и вопрос о площади треугольника. Пусть ABC — треугольник с неизотропными сторонами. Используя соотношение (5) получаем, что либо с = a – b, либо с = b – a, либо c = a ± b. Таким образом, во всяком треугольнике с неизотропными сторонами справедливо одно и только одно их трех соотношений: a = b + c, b = c + a, c = a + b. (11) Иначе говоря, во всяком треугольнике с неизотропными сторонами большая сторона равна сумме двух других сторон. Это аналог теоремы косинусов. Далее, если обозначить, как обычно, через A, В, С величины углов треугольника AВС с неизотропными сторонами а, b, с, то согласно (7) можно получить аналог теоремы синусов (12). Из соотношений (11) и (12) получаем Следствие. Во всяком треугольнике с неизотропными сторонами выполняется одно и только одно из трех соотношений: A = B + C, B = C + A, C = A + B, (13) т . е. больший угол треугольника равен сумме двух других его углов. Следует учитывать, что меры смежных углов равны. Это непосредственно видно из формулы (8). Рассмотрим вопрос о площади треугольника. Площадь — понятие аффинное. (Точнее говоря, аффинным понятием является отношение площадей, а площадь — лишь относительный инвариант аффинных преобразова­ний). Поэтому это понятие имеет тот же смысл и во флаговой геометрии. Пожалуйста, просмотрите эту ссылку для получения полной информации.

Движения флаговой плоскости. Определение. Движениями называются аффинные преобразования, сохраняющие длину отрезка и величину угла. Как видно из формул (4) и (10), сохранение длин отрезков не влечет за собой обязательного сохранения величины угла. Поэтому в отличие от евклидовой геометрии оба эти тр
Слайд 11

Движения флаговой плоскости

Определение. Движениями называются аффинные преобразования, сохраняющие длину отрезка и величину угла. Как видно из формул (4) и (10), сохранение длин отрезков не влечет за собой обязательного сохранения величины угла. Поэтому в отличие от евклидовой геометрии оба эти требования включены в определение движения. По этой ссылке перейдите, пожалуйста, на продолжение этой главы

Принцип двойственности для флаговой плоскости. Во флаговой геометрии имеет место интересный принцип двойственности, являющийся следствием принципа двойственности для проективной плоскости. можно сформулировать следующий принцип двойственности для флаговой плоскости: Если истинно некоторое предложени
Слайд 12

Принцип двойственности для флаговой плоскости

Во флаговой геометрии имеет место интересный принцип двойственности, являющийся следствием принципа двойственности для проективной плоскости. можно сформулировать следующий принцип двойственности для флаговой плоскости: Если истинно некоторое предложение, то будет истинно и другое предложение, которое получается из первого взаимной заменой слов: « точка» — «прямая», «лежит на» — «проходит через», «точки изотропной прямой»—-«параллельные неизотропные прямые», «отрезок» — «угол», «длина отрезка» — «величина угла». В евклидовой геометрии такой или подобный принцип двойственности не имеет места. Формулы (11) и (13) взаимно двойственны по этому принципу. Формула (12) двойственна сама себе. Основное достоинство принципа двойственности состоит в том, что он позволяет получать новые теоремы из известных ранее. Для примера рассмотрим теорему, двойственную теореме о медианах треугольника. Легко сообразить, что по принципу двойственности серединам сторон треугольника соответствуют биссектрисы (конечно, в смысле флаговой геометрии) углов треугольника, поэтому прямым, содержащим медианы, соответствуют точки пересечения биссектрис с противоположными им сторонами, а медианам соответствуют углы между биссектрисами и этими сторонами. Таким образом, теорема о медианах треугольника по принципу двойственности переходит в новую теорему: Точки пересечения биссектрис (неравнобедренного) треугольника с противоположными им сторонами лежат на одной прямой, которая делит углы, образованные биссектрисами с противоположными сторонами треугольника, в отношении 2:1, считая от стороны. Глава полностью

Заключение. Мы видим, что флаговая геометрия много проще евклидовой. Это ценно в том отношении, что при сравнительно небольшой затрате сил и времени на примере построения этой геометрии можно дать конкретное представление о принципах евклидовых геометрий. Изобретение неевклидовой геометрии имело бол
Слайд 13

Заключение

Мы видим, что флаговая геометрия много проще евклидовой. Это ценно в том отношении, что при сравнительно небольшой затрате сил и времени на примере построения этой геометрии можно дать конкретное представление о принципах евклидовых геометрий. Изобретение неевклидовой геометрии имело большое философское значение: оно показало, что ошибочен взгляд философов-идеалистов, считавших, что существуют истины, которые присущи нашему сознанию до всякого опыта, и приводивших в качестве примеров таких истин аксиомы евклидовой геометрии. Создание неевклидовой геометрии оказало большое влияние на развитие физики. Неевклидовы геометрии оказались полезным аппаратом при создании новых важных физических теорий, среди которых в первую очередь следует назвать общую теорию относительности А. Эйнштейна.

Список используемой литературы. Болтянский В.Г., Яглом И.М. Векторное обоснование геометрии. Сборник «Новое в школьной математике». М., «Знание», 1972. Розенфельд Б.А. Неевклидовы пространства. М., «Наука», 1969. Яглом И.М. Принцип относительности Галилея и неевклидова геометрия. М., «Наука», 1969.
Слайд 14

Список используемой литературы

Болтянский В.Г., Яглом И.М. Векторное обоснование геометрии. Сборник «Новое в школьной математике». М., «Знание», 1972. Розенфельд Б.А. Неевклидовы пространства. М., «Наука», 1969. Яглом И.М. Принцип относительности Галилея и неевклидова геометрия. М., «Наука», 1969. Журнал «Математика в школе», №1 январь-февраль. М., «Педагогика», 1975.

Список похожих презентаций

Бинарный урок геометрии и информатики "Четырехугольники. Решение задач" Лауреат

Бинарный урок геометрии и информатики "Четырехугольники. Решение задач" Лауреат

Проверка домашнего задания. В трапеции АВСD (АD – большее основание) диагональ АС ┴СD и делит ВАD пополам, СDА=60, периметр трапеции – 20 см. Найдите ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...
Билеты устного экзамена по геометрии

Билеты устного экзамена по геометрии

Прямоугольный треугольник. Треугольник, у которого один из углов прямой, называется прямоугольным. ∆ACB – прямоугольный. Соотношение в прямоугольном ...
Викторина по истории геометрии

Викторина по истории геометрии

Кто из великих геометров древности , по приданию, сказал вражескому солдату, пришедшему его убить: «Не тронь моих кругов»? 1 задание. Ответ 1. Архимед, ...
Анализ учебников по геометрии

Анализ учебников по геометрии

Хорошо известно, что успехи в обучении школьников во многом зависят от содержания и структуры учебника, по которому они занимаются. По одним учебникам ...
Викторина по геометрии

Викторина по геометрии

Вопрос 1: Выберите верную формулировку определения прямоугольного треугольника:. Вопрос 2: Верно ли, что сумма острых углов прямоугольного треугольника ...
Аксиомы расположения точек на прямой и плоскости

Аксиомы расположения точек на прямой и плоскости

Выполните действия и сделайте записи:. 1. Изобразите точку С, лежащую на прямой а. 2. Изобразите точку D, не лежащую на этой прямой. 3. Проведите ...
Аксиомы геометрии

Аксиомы геометрии

Евклид и его труды III в до н.э. Такой подход, когда сначала формируются исходные положения-аксиомы, а затем на их основе путем логических рассуждений ...
Викторина по геометрии

Викторина по геометрии

Цель: Воспитание интереса к предмету математики через использование игровых форм. Развитие внимания и сообразительности, логического мышления, формирование ...
Виды симметрии в геометрии

Виды симметрии в геометрии

1. повторить осевую и центральную симметрии; 2. познакомиться с зеркальной симметрией; 3. закрепить знания по видам симметрии. Цель урока:. Введение ...
3 вида разложение многочлена на множители

3 вида разложение многочлена на множители

1 вид вынесение общего множителя за скобки. Что значит разложить многочлен на множители? Разложить многочлен на множители — это значит представить ...
Вводное повторение курса геометрии о параллельных прямых

Вводное повторение курса геометрии о параллельных прямых

Назвать все углы, образовавшиеся при пересечении двух прямых третьей. 1 3 4 5 6 7 8 а в. Задача №1 2 А В Е К. Дано:. Задача № 2 С. Отрезки АВ и СЕ ...
Вводное повторени для 8 классов по геометрии

Вводное повторени для 8 классов по геометрии

8 9 10 11 14 15 16 17 18 30 33 34 35 36 1 3 4 5 6 13 19 31 7. Найти: 440 D С О В А ? 2. Дано:. a0 F b0. O. N R M L. a b c 650. . 450 K E 1350 800. ...
Введение понятий "больше‒меньше" на числовом луче

Введение понятий "больше‒меньше" на числовом луче

1 0 5 меньше левее. 8 больше правее. 3 3 < 5 < 8 8 > 5 > 3. 3 + 5 =. . . ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
«Моя математика» - задачи на нахождение целого или части

«Моя математика» - задачи на нахождение целого или части

МАТЕМАТИКА 1 3 4 5 7 6 8 9 0. Работа с числовым рядом. http://www.bajena.com/ru/kids/mathematics/sum-mathematics.php. 1. Прочитайте текст справа и ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
Активизация мыслительной деятельности на уроках математики

Активизация мыслительной деятельности на уроках математики

Активные формы урока. Урок-лекция. Урок-консультация. Урок-практикум Урок-семинар Урок-зачёт. урок-лекция. Зачёт №2 по геометрии в 11 классе 1.Объясните, ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
Авария на промышленном объекте

Авария на промышленном объекте

Цели урока:. Повторить материал по темам “ Площади криволинейных трапеций”, “Решение показательных уравнений”, выявить пробелы в знаниях и постараться ...

Конспекты

Деление десятичных дробей на натуральные числа

Деление десятичных дробей на натуральные числа

МБОУ СОШ № 162. Открытый урок по математике в 5 классе. по теме « Деление десятичных дробей на натуральные числа. Учитель: Титкова Наталья ...
Деление и умножение суммы на число

Деление и умножение суммы на число

Спресова Наталья Николаевна. Муниципальное общеобразовательное учреждение: средняя общеобразовательная школа, с.Нялинское Ханты-Мансийского района ...
Деление десятичной дроби на десятичную дробь

Деление десятичной дроби на десятичную дробь

Урок математики для 5 класса на тему «Деление десятичной дроби на десятичную дробь». План-конспект урока математики в 5 классе по теме "Деление ...
Деление десятичной дроби на натуральное число

Деление десятичной дроби на натуральное число

Азарова Лидия Васильевна, учитель математики МБОУ Михейковская СОШ. Тема:. «Деление десятичной дроби на натуральное число». Класс:. 5. . Тип ...
Деление многозначного числа на однозначное число

Деление многозначного числа на однозначное число

Тема урока:. Деление многозначного числа на однозначное число. . . Цель:. Систематизировать знания по теме «Деление многозначного числа на однозначное». ...
Деление десятичной дроби на десятичную дробь

Деление десятичной дроби на десятичную дробь

Учитель: Очирова Мидыгма Гомбоевна. Предмет: математика. Класс: 5. Тема урока: Деление десятичной дроби на десятичную дробь (1-ый урок). Цель ...
Внетабличное деление двузначногочисла на однозначное

Внетабличное деление двузначногочисла на однозначное

«Внетабличное деление двузначного числа на однозначное». Цели:. Образовательная. : формировать умение выполнять внетабличное деление двузначных ...
Деление многозначного числа на однозначное

Деление многозначного числа на однозначное

. . Урок по математике в 4 классе. . УМК «Школа 2100». по теме. . «Деление многозначного числа на однозначное». Цели:. . Образовательная:. ...
Виды углов. Умножение и деление двузначного числа на однозначное

Виды углов. Умножение и деление двузначного числа на однозначное

Павлодарская область. Актогайский район. . с.Барлыбай. . . Енбекшинская средняя школа. Тема:. . «Виды углов. Умножение и деление двузначного. ...
Вместе весело шагать на экзамен

Вместе весело шагать на экзамен

КОУ ВО «ТАЛОВСКАЯ ШКОЛА-ИНТЕРНАТ ДЛЯ ДЕТЕЙ-СИРОТ И ДЕТЕЙ, ОСТАВШИХСЯ БЕЗ ПОПЕЧЕНИЯ РОДИТЕЛЕЙ». 9 КЛАСС. ПРИГОТОВИЛИ : Гриценко Р.А. Носова ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:24 февраля 2019
Категория:Математика
Содержит:14 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации