- Подгруппа азота. История открытия элементов

Презентация "Подгруппа азота. История открытия элементов" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19

Презентацию на тему "Подгруппа азота. История открытия элементов" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайд(ов).

Слайды презентации

История открытия элементов. Подгруппа азота
Слайд 1

История открытия элементов

Подгруппа азота

Четырежды открытый. Генри Кавендиш (1732 – 1810). Джозеф Пристли (1733 – 1804). Карл Шееле (1742-1786). Даниель Резерфорд (1749 – 1819)
Слайд 2

Четырежды открытый

Генри Кавендиш (1732 – 1810)

Джозеф Пристли (1733 – 1804)

Карл Шееле (1742-1786)

Даниель Резерфорд (1749 – 1819)

Британский физик и химик Генри Кавендиш получил азот из воздуха (1777г.), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (Air mephitic от латинского mep
Слайд 3

Британский физик и химик Генри Кавендиш получил азот из воздуха (1777г.), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (Air mephitic от латинского mephitis - удушливое или вредное испарение земли).

Британский естествоиспытатель Д. Пристли практически одновременно с Г.Кавендишем проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот. Но будучи сторонником господствующей в те времена теории флогистона, совершенно нев
Слайд 4

Британский естествоиспытатель Д. Пристли практически одновременно с Г.Кавендишем проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот. Но будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты : по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным.

Карл Вильгельм Шееле (1742-1786). Официальной датой открытия азота считается 1772 год, однако еще в 1770 г. швед, помощник аптекаря Карл Вильгельм Шееле, будущий академик, выделил азот из «сгоревшего воздуха», но не сообщил об этом. Лишь в 1777 г. в труде «Химический трактат о воздухе и огне» Шееле
Слайд 5

Карл Вильгельм Шееле (1742-1786)

Официальной датой открытия азота считается 1772 год, однако еще в 1770 г. швед, помощник аптекаря Карл Вильгельм Шееле, будущий академик, выделил азот из «сгоревшего воздуха», но не сообщил об этом. Лишь в 1777 г. в труде «Химический трактат о воздухе и огне» Шееле описал получение и свойства «огненного воздуха» и указал, что атмосферный воздух состоит из двух «видов воздуха»: «огненного» — кислорода и «флогистированного» — азота.

В 1772 г. английский физик и химик Д. Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им "удушливым воздухом", не поддерживает дыхания и горения. Резерфорд описал этот газ (названный позже в 1787 г. Антуаном Лавуазье «
Слайд 6

В 1772 г. английский физик и химик Д. Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им "удушливым воздухом", не поддерживает дыхания и горения. Резерфорд описал этот газ (названный позже в 1787 г. Антуаном Лавуазье «азотом») как простое вещество, опубликовав магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота.

Таинственный «светоносец». Хеннинг Бранд (1630 – 1710). Иоганн Кункель (1630 – 1702). Роберт Бойль (1627 – 1691). Андреас Маргграф (1709 – 1782)
Слайд 7

Таинственный «светоносец»

Хеннинг Бранд (1630 – 1710)

Иоганн Кункель (1630 – 1702)

Роберт Бойль (1627 – 1691)

Андреас Маргграф (1709 – 1782)

Первым в свободном состоянии фосфор, названный сначала «холодным огнём», получил в 1669г. гамбургский алхимик Хеннинг Бранд. В поисках «философского камня» он прокалил в закрытом сосуде сухой остаток от выпаривания мочи с речным песком и древесным углем. После прокаливания сосуд c реагентами начал с
Слайд 8

Первым в свободном состоянии фосфор, названный сначала «холодным огнём», получил в 1669г. гамбургский алхимик Хеннинг Бранд. В поисках «философского камня» он прокалил в закрытом сосуде сухой остаток от выпаривания мочи с речным песком и древесным углем. После прокаливания сосуд c реагентами начал светиться в темноте белым светом, на чем Бранд сразу же стал наживаться. Однако, есть сведения, что аналогичное по свойствам вещество было получено еще в 12 веке. Арабский алхимик Алхид Бехиль получил при перегонке мочи с глиной и известью светящееся вещество, названное им «эскарбукль».

Хотя Бранд держал в строгом секрете свое открытие фосфора (от греч.- «свет» и «несу», т. е. светоносца), о секрете узнал некто Кункель, служивший в то время алхимиком и тайным камердинером у саксонского курфюрста. Кункелю удалось самому приготовить фосфор способом, близким к способу Бранда, и в отли
Слайд 9

Хотя Бранд держал в строгом секрете свое открытие фосфора (от греч.- «свет» и «несу», т. е. светоносца), о секрете узнал некто Кункель, служивший в то время алхимиком и тайным камердинером у саксонского курфюрста. Кункелю удалось самому приготовить фосфор способом, близким к способу Бранда, и в отличие от последнего он широко рекламировал фосфор, умалчивая, однако, о секрете его изготовления. Это происходило в 70-х годах XVII в.

В третий раз фосфор открыл английский физик, химик и философ Роберт Бойль в 1680 г., который опубликовал данные о свойствах фосфора в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года . Это сообщение было опубликовано только через 12 лет, уже после смерти
Слайд 10

В третий раз фосфор открыл английский физик, химик и философ Роберт Бойль в 1680 г., который опубликовал данные о свойствах фосфора в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года . Это сообщение было опубликовано только через 12 лет, уже после смерти Бойля в 1693 году.

Усовершенствованный способ получения фосфора опубликовал в 1743 г. немецкий химик и металлург, член Берлинской академии наук Андреас Сигизмунд Маргграф. Фосфор, как малоисследованное и очень дорогое вещество , заинтересовал ученого (в Амстердаме в 1730г. 31 г фосфора стоил 80 золотых рублей). Марггр
Слайд 11

Усовершенствованный способ получения фосфора опубликовал в 1743 г. немецкий химик и металлург, член Берлинской академии наук Андреас Сигизмунд Маргграф. Фосфор, как малоисследованное и очень дорогое вещество , заинтересовал ученого (в Амстердаме в 1730г. 31 г фосфора стоил 80 золотых рублей). Маргграф разработал более усовершенствованный и дешевый способ получения фосфора из мочи с применением фосгенита (редкий коллекционный минерал группы карбонатов, карбонат свинца), песка и угля, чем положил конец «фосфорной спекуляции».

Коварный «отравитель». Альберт Великий (1193 – 1280). Диоскорид (ок. 40г.н.э.)
Слайд 12

Коварный «отравитель»

Альберт Великий (1193 – 1280)

Диоскорид (ок. 40г.н.э.)

Точная дата открытия мышьяка не установлена. Известен мышьяк с глубокой древности: в трудах Диоскорида (I в. н.э.) упоминается о прокаливании вещества, которое сейчас называют сернистым мышьяком; в III...IV в. в записях, приписываемых Зозимосу, есть упоминание о металлическом мышьяке; у греческого п
Слайд 13

Точная дата открытия мышьяка не установлена. Известен мышьяк с глубокой древности: в трудах Диоскорида (I в. н.э.) упоминается о прокаливании вещества, которое сейчас называют сернистым мышьяком; в III...IV в. в записях, приписываемых Зозимосу, есть упоминание о металлическом мышьяке; у греческого писателя Олимпиодоруса (V в. н.э.) описано изготовление белого мышьяка в VIII в. арабский алхимик Гебер получил трехокись мышьяка;

В Европе открытие способа получения металлического мышьяка (серого мышьяка) приписывают доминиканскому монаху Альберту Великому. Это монашеское имя принадлежало широко образованному энциклопедисту, профессору графу фон Больштедту. В трудах этого знаменитого немецкого естествоиспытателя и теолога сод
Слайд 14

В Европе открытие способа получения металлического мышьяка (серого мышьяка) приписывают доминиканскому монаху Альберту Великому. Это монашеское имя принадлежало широко образованному энциклопедисту, профессору графу фон Больштедту. В трудах этого знаменитого немецкого естествоиспытателя и теолога содержится точное описание получения мышьяка (примерно 1250г.).

«Волк» металлов. Василий Валентин (15 век). Антуан Лавуазье (1743 – 1794)
Слайд 15

«Волк» металлов

Василий Валентин (15 век)

Антуан Лавуазье (1743 – 1794)

Хищный волк с раскрытой пастью - таков алхимический знак сурьмы, которая известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (Sb2S3) применялся для чернения бровей.
Слайд 16

Хищный волк с раскрытой пастью - таков алхимический знак сурьмы, которая известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (Sb2S3) применялся для чернения бровей. В Древней Греции он был известен как stími и stíbi, отсюда латинский stibium. Около 12—14 вв. н. э. появилось название antimonium – «средство против монахов». Подробное описание свойств и способов получения сурьмы и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604г.

В 1789г. французский химик Антуан Лоран Лавуазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony, испанский и итальянский antimonio, немецкий Antimon). Русская «сурьма» произошло от турецкого sürme; им обозначался порошок свинцового блеска PbS, т
Слайд 17

В 1789г. французский химик Антуан Лоран Лавуазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony, испанский и итальянский antimonio, немецкий Antimon). Русская «сурьма» произошло от турецкого sürme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по другим данным, «сурьма» — от персидского «сурме» — металл).

Невезучий висмут. Георг Агрикола (1494 – 1555). Висмут известен с 15 века, но ему не везло. Издревле используемый человеком висмут долго принимали за разновидность олова, свинца или сурьмы. Впервые яркую и точную картину получения висмута дал в 1529г. немецкий врач, металлург Агрикола (Георг Бауэр)
Слайд 18

Невезучий висмут

Георг Агрикола (1494 – 1555)

Висмут известен с 15 века, но ему не везло. Издревле используемый человеком висмут долго принимали за разновидность олова, свинца или сурьмы. Впервые яркую и точную картину получения висмута дал в 1529г. немецкий врач, металлург Агрикола (Георг Бауэр) в своем труде «12 книг металлургии». Но до 18 в. висмут не признавался за самостоятельный металл. Как элемент висмут был открыт немецким химиком и фармацевтом Иоганном Поттом в 1739 году. Висмут введен в химическую номенклатуру в 1819г. шведским химиком Йенсом Якобом Берцелиусом.

Элемент 115. ОИЯИ Дубна, Россия. В феврале 2004г. в Объединённом институте ядерных исследований (Дубна, Россия) были опубликованы результаты экспериментов, проводившихся с 14 июля по 10 августа 2003 года, в результате которых был получен 115-ый элемент. Исследования проводились совместно с Ливерморс
Слайд 19

Элемент 115

ОИЯИ Дубна, Россия

В феврале 2004г. в Объединённом институте ядерных исследований (Дубна, Россия) были опубликованы результаты экспериментов, проводившихся с 14 июля по 10 августа 2003 года, в результате которых был получен 115-ый элемент. Исследования проводились совместно с Ливерморской национальной лабораторией (США). В этих экспериментах в результате бомбардировки мишени из америция ионами кальция были синтезированы изотопы элемента 115: три ядра 288Uup и одно ядро 287Uup. Все четыре ядра в результате α-распада превратились в изотопы элемента 113.

Список похожих презентаций

Арены. История открытия

Арены. История открытия

Здравствуйте, я - Бензол. Своим рождением я обязан немецкому химику Иоганну Глауберу, который получил меня в 1649 г. в результате перегонки каменноугольной ...
Подгруппа азота

Подгруппа азота

Выбери игру. Управление презентацией. 1. Главный слайд - № 2 (по гиперссылке необходимо перейти на любую из игр). На главный слайд (№ 2). Завершить ...
Стекло. История открытия, получение, применение

Стекло. История открытия, получение, применение

История. Самое древнее производство Эпохи фараонов. Мастерство египетских стеклоделов достигло совершенства. Древний Египет оставил нам многочисленные ...
История открытия. естественной радиоактивности

История открытия. естественной радиоактивности

Один мудрец сказал... "Жизнь учит только тех, кто её изучает". В. Ключевский. Основные этапы естественнонаучных открытий в области физики и математики. ...
Подгруппа азота (V - А группа)

Подгруппа азота (V - А группа)

N P As Sb Bi - азот - фосфор. - мышьяк ( арсеникум). - сурьма (стибиум) - висмут. Чем похожи и чем различаются элементы главной подгруппы V группы? ...
История открытия периодического закона и его экспериментальное подтверждение

История открытия периодического закона и его экспериментальное подтверждение

Цель нашей работы:. попытаться предсказать будущее. периодической системы на основе. имеющихся фактов. Объект исследования:. периодический закон и ...
История открытия стекла

История открытия стекла

Стекло известно людям уже около 55 веков. Самые древние образцы обнаружены в Египте. В Индии, Корее, Японии найдены стеклянные изделия, возраст которых ...
История открытия и экспериментального подтверждения периодического закона

История открытия и экспериментального подтверждения периодического закона

Введение. Данная работа направлена на изучение и углубление знаний о величайшем открытии XIX в. – Периодическом законе химических элементов Д. И. ...
Аминокислоты. История их открытия

Аминокислоты. История их открытия

История открытия. К началу XIX столетия появляются первые работы по химическому изучению белков. Уже в 1803 г. Дж. Дальтон дает первые формулы белков ...
Подгруппа азота

Подгруппа азота

1.С ростом порядкового номера элемента кислотные свойства оксидов в ряду…. N2O - P2O3 - As2O3 - Sb2O3 -Bi2O3. а) усиливаются б) ослабевают в) остаются ...
Подгруппа углерода и азота

Подгруппа углерода и азота

Цель урока:. Закрепить и обобщить знания об основных физических и химических свойствах углерода, азота и их соединений. Продолжить формировать умение ...
Валентность химических элементов

Валентность химических элементов

Валентность некоторых химических элементов в химических соединениях. С постоянной валентностью. C переменной валентностью. Определение валентности ...
Генеалогическое древо азота

Генеалогическое древо азота

Строение атома азота. Азот – „безжизненный, апатичный, инертный” 1S22S22P3 Высшая валентность IV Высшая степень окисления +5 Степени окисления азота ...
Общая характеристика элементов подгруппы кислорода

Общая характеристика элементов подгруппы кислорода

ПАМЯТКА К ИЗУЧЕНИЮ ПОДГРУППЫ ЭЛЕМЕНТОВ. 1.Пользуясь Периодической системой, выпишите символы и названия химических элементов, относящихся к данной ...
Знаки химических элементов

Знаки химических элементов

Другого ничего в природе нет ни здесь, ни там, в космических глубинах: все — от песчинок малых до планет — из элементов состоит единых.   Как формула, ...
Знаки химических элементов

Знаки химических элементов

Другого ничего в природе нет Ни здесь, ни там, в космических глубинах: Все - от песчинок малых до планет - Из элементов состоит единых. Степан Щипачев ...
Периодическая система химических элементов Д.И. Менделеева и строение атома

Периодическая система химических элементов Д.И. Менделеева и строение атома

Цель:. Повторить основные теоретические вопросы программы 8 класса; Закрепить знания о причинах изменения свойств химических элементов на основании ...
Периодический закон и периодическая система элементов

Периодический закон и периодическая система элементов

Периодический закон и периодическая система элементов. В 1869 г. Дмитрий Иванович Менделеев показал, что свойства простых веществ, а также формы и ...
История металлов

История металлов

Цель:. Рассказать об открытии металлов. Гипотеза:. Возможно открытие металлов никак не повлияло на развитие цивилизаций. Медь. История цивилизаций ...
История микроскопа

История микроскопа

Первые микроскопы, изобретённые человечеством, были оптическими, и первого их изобретателя не так легко выделить и назвать. Самые ранние сведения ...

Конспекты

Подгруппа азота

Подгруппа азота

АЗОТ. Тема. : подгруппа азота. Тема урок. : азот. Цели. . . . 1. . Образовательная. . Выявление и оценка степени овладения учащимися системой ...
Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение

Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение

Дата_____________ Класс_______________. Тема:. . Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот, ...
Периодичность изменения свойств элементов в главных подгруппах и периодах

Периодичность изменения свойств элементов в главных подгруппах и периодах

Тема: Периодичность изменения свойств элементов в главных подгруппах и периодах, периодичность изменения окислительно-восстановительных и кислотно-основных ...
Подгруппа Азота

Подгруппа Азота

Итоговый урок по теме: « Подгруппа Азота» . ( урок для учащихся 9 классов по неорганической химии, изучаемый в разделе «Подгруппа азота» на который ...
Подгруппа азота

Подгруппа азота

Конспект урока по химии в 9 классе. Гребенюк Татьяна Николаевна,. . . учитель химии высшей категории. МОУ СОШ №5 «Образовательный центр». ...
Подгруппа азота

Подгруппа азота

Урок-семинар в 9 классе. по теме: «Подгруппа азота». Девиз урока: « Мало знать, надо и применять. Мало хотеть, надо и делать» (Гёте). Цели ...
Положение кислорода и серы в периодической системе химических элементов, строение их атомов. Озон – аллотропная модификация кислорода

Положение кислорода и серы в периодической системе химических элементов, строение их атомов. Озон – аллотропная модификация кислорода

Дата _____________ Класс ___________________. Тема: Положение кислорода и серы в периодической системе химических элементов, строение их атомов. ...
Валентность и степень окисления атомов. Периодичность в изменении свойств соединений элементов

Валентность и степень окисления атомов. Периодичность в изменении свойств соединений элементов

План учебного занятия №4. . Дата Предмет. химия. группа. Ф.И.О. преподавателя:. Кайырбекова И.А. . І. Тема занятия:. . Валентность и степень ...
Подгруппа углерода. Углерод как простое вещество

Подгруппа углерода. Углерод как простое вещество

Тема: «Подгруппа углерода. Углерод как простое вещество». Цель урока. :. Дать общую характеристику элементам. VI. А группы, показать аллотропные ...
Строение электронных оболочек атомов химических элементов

Строение электронных оболочек атомов химических элементов

Областное государственное автономное общеобразовательное учреждение. «Центр образования «Ступени». план-конспект урока. Тема урок:. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:27 октября 2018
Категория:Химия
Содержит:19 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации