- Углеродные материалы

Презентация "Углеродные материалы" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16

Презентацию на тему "Углеродные материалы" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 16 слайд(ов).

Слайды презентации

Химическая технология природных энергоносителей и углеродных материалов. Преподаватель Левашова Альбина Ивановна, к.т.н. Францина Евгения Владимировна, ассистент кафедры ХТТ
Слайд 1

Химическая технология природных энергоносителей и углеродных материалов

Преподаватель Левашова Альбина Ивановна, к.т.н. Францина Евгения Владимировна, ассистент кафедры ХТТ

Список литературы: Бухаркина Т.В., Дигуров Н.Г. Химия природных энергоносителей и углеродных материалов. – М.: РХТУ, 1999 Потехин В.М.,Потехин В.В. Основы теории химических процессов технологии органических веществ и нефтепереработки. Учебник для вузов-С.-П.:Химиздат, 2007.-994 с. (гриф УМО). Ахмето
Слайд 2

Список литературы:

Бухаркина Т.В., Дигуров Н.Г. Химия природных энергоносителей и углеродных материалов. – М.: РХТУ, 1999 Потехин В.М.,Потехин В.В. Основы теории химических процессов технологии органических веществ и нефтепереработки. Учебник для вузов-С.-П.:Химиздат, 2007.-994 с. (гриф УМО). Ахметов А.С., Ишмияров М.Х., Кауфман А.А. Технология переработки нефти, газа и твердых горючих ископаемых. Учебное пособие. СПб Недра, 2009.–832 с (гриф УМО). Химия нефти и газа под ред. В.А. Проскурякова и А.Е. Драпкина.Учебное пособие для вузов.-Л.:Химия, 1995.-495с. (гриф УМО). Мановян А.К. Технология переработки природных энергоносителей, 2004 Вержичинская С.В., Дигуров Н.Г. Химия и технология нефти и газа, 2007 А.И.Левашова, А.В. Кравцов Химия природных энергоносителей и углеродных материалов. – Томск: ТПУ, 2008.-119 с. А.И.Левашова, Н.В. Ушева Химия природных энергоносителей и углеродных материалов. Примеры и задачи. – Томск: ТПУ, 2008-92 с.

Введение. Химия природных энергоносителей и углеродных материалов рассматривает сырьевые материалы – природные энергоносители (горючие ископаемые ГИ): природный газ нефть твердые ГИ (торф, уголь, горючие сланцы и др.) материалы с высоким содержание углерода (графиты, алмазы, коксы, нефтяные и каменн
Слайд 3

Введение

Химия природных энергоносителей и углеродных материалов рассматривает сырьевые материалы – природные энергоносители (горючие ископаемые ГИ): природный газ нефть твердые ГИ (торф, уголь, горючие сланцы и др.) материалы с высоким содержание углерода (графиты, алмазы, коксы, нефтяные и каменноугольные пеки)

В первом приближении фазовое состояние ГИ может быть сопоставлено с соотношением Н/С максимум водорода содержат газы, минимум твердые вещества, нефти занимают промежуточное положение. Чтобы перевести вещество из твердого состояния в жидкое необходимо его обогатить водородом.
Слайд 4

В первом приближении фазовое состояние ГИ может быть сопоставлено с соотношением Н/С максимум водорода содержат газы, минимум твердые вещества, нефти занимают промежуточное положение. Чтобы перевести вещество из твердого состояния в жидкое необходимо его обогатить водородом.

Основные разделы курса: Физические и химические свойства углерода Термодинамика и основные стадии процессов термической деструкции Твердые природные энергоносители Характеристика нефти и газа Химизм и механизмы основных процессов технологии природных энергоносителей и углеродных материалов Термическ
Слайд 5

Основные разделы курса:

Физические и химические свойства углерода Термодинамика и основные стадии процессов термической деструкции Твердые природные энергоносители Характеристика нефти и газа Химизм и механизмы основных процессов технологии природных энергоносителей и углеродных материалов Термические процессы Каталитический крекинг и алкилирование у/в Процессы с переносом водорода Окисление углеродсодержащих веществ Синтезы на основе СО2 и Н2

Углерод. Аллотропные модификации углерода. Аллотропия – способность атомов одного и того же элемента существовать в виде нескольких простых веществ. Аллотропные модификации углерода: Алмаз sp3 – гибридизация Графит Фуллерены sp2 – гибридизация Карбин sp – гибридизация Различие физических и химически
Слайд 6

Углерод. Аллотропные модификации углерода

Аллотропия – способность атомов одного и того же элемента существовать в виде нескольких простых веществ. Аллотропные модификации углерода: Алмаз sp3 – гибридизация Графит Фуллерены sp2 – гибридизация Карбин sp – гибридизация Различие физических и химических свойств этих модификаций обусловлено различием связей между атомами углерода в этих соединениях

Структурные формулы различных аллотропных модификаций углерода
Слайд 7

Структурные формулы различных аллотропных модификаций углерода

Физические свойства углерода. Векторные Скалярные. Механические (упругость, хрупкость, пластичность). Тепловые (теплопроводность, теплоемкость, тепловое расширение). Электрические (электропроводность). Плотность, удельная теплоемкость, температура фазовых переходов
Слайд 8

Физические свойства углерода

Векторные Скалярные

Механические (упругость, хрупкость, пластичность)

Тепловые (теплопроводность, теплоемкость, тепловое расширение)

Электрические (электропроводность)

Плотность, удельная теплоемкость, температура фазовых переходов

Химические свойства углерода. При низких температурах углеродные материалы достаточно инертны ко многим реагентам, однако при высоких температурах они способны к взаимодействию со многими веществами. Наиболее изучены реакции углерода: С газами (хемосорбция, катализатор, стравливание дефектов) Карбид
Слайд 9

Химические свойства углерода

При низких температурах углеродные материалы достаточно инертны ко многим реагентам, однако при высоких температурах они способны к взаимодействию со многими веществами. Наиболее изучены реакции углерода: С газами (хемосорбция, катализатор, стравливание дефектов) Карбидообразование (Al4C3, Ca2C, SiC, B4C3, с жидким металлом, модификация углеграфитовых материалов) Реакции с образованием слоистых соединений

Слоистые соединения. Непроводящие: Получают при обработке графита смесью HNO3 и H2SO4, дымящей H2SO4 или др. сильными окислителями Сn окис-ль СnOmHx (оксид графита) Получают при обработке графита прямым воздействием газообразного F2: Сn + 1/2F2 (СF)n (фторид графита) Проводящие: Получаются нагревани
Слайд 10

Слоистые соединения

Непроводящие: Получают при обработке графита смесью HNO3 и H2SO4, дымящей H2SO4 или др. сильными окислителями Сn окис-ль СnOmHx (оксид графита) Получают при обработке графита прямым воздействием газообразного F2: Сn + 1/2F2 (СF)n (фторид графита) Проводящие:

Получаются нагреванием графита в присутствии Ме до t, отвечающей определенному давлению паров Ме.

Термодинамика процессов термической деструкции. Термодинамическая вероятность протекания хим. реакции определяется величиной изменения свободной энергии Гиббса ∆G (изобарно-изотермического потенциала): Реакци протекает в прямом направлении, если ∆G0 Процесс в состоянии равновесия, если ∆G=0
Слайд 11

Термодинамика процессов термической деструкции

Термодинамическая вероятность протекания хим. реакции определяется величиной изменения свободной энергии Гиббса ∆G (изобарно-изотермического потенциала): Реакци протекает в прямом направлении, если ∆G0 Процесс в состоянии равновесия, если ∆G=0

ЗАВИСИМОСТЬ ∆G СИНТЕЗА У/В ИЗ ПРОСТЫХ ВЕЩЕСТВ ОТ ТЕМПЕРАТУРЫ. Термодинамическая устойчивость веществ при t нафтены > олефины > арены Термодинамическая устойчивость веществ при t>7000C: арены > олефины > нафтены > парафины. ∆G является характеристикой начального и конечного энергети
Слайд 12

ЗАВИСИМОСТЬ ∆G СИНТЕЗА У/В ИЗ ПРОСТЫХ ВЕЩЕСТВ ОТ ТЕМПЕРАТУРЫ

Термодинамическая устойчивость веществ при t нафтены > олефины > арены Термодинамическая устойчивость веществ при t>7000C: арены > олефины > нафтены > парафины

∆G является характеристикой начального и конечного энергетического состояния системы и не учитывает скорости перехода от исх.веществ к продуктам.

Энергия разрыва связей в органическом веществе. Из сравнения энергий связи следует, что в первую очередь будут рваться связи: 1. Углерод-гетероатом (NH3, H2S, CO2 и др.). 2. С-С и С-H (парафин, олефин)
Слайд 13

Энергия разрыва связей в органическом веществе

Из сравнения энергий связи следует, что в первую очередь будут рваться связи: 1. Углерод-гетероатом (NH3, H2S, CO2 и др.)

2. С-С и С-H (парафин, олефин)

Синтез углерода. Материалы, состоящие из атомов углерода могут быть получены высокотемпературной обработкой углеродсодержащих веществ как в газовой фазе, так и в конденсированной. Синтез углерода из газовой фазы Происходит из полностью неструктурированной системы при высоких температурах практически
Слайд 14

Синтез углерода

Материалы, состоящие из атомов углерода могут быть получены высокотемпературной обработкой углеродсодержащих веществ как в газовой фазе, так и в конденсированной.

Синтез углерода из газовой фазы Происходит из полностью неструктурированной системы при высоких температурах практически мгновенно, поэтому невозможно проследить формирование кристаллитов. Таким образом получают сажу фуллерены, пироуглерод, алмаз.

Синтез углерода из конденсированной фазы (тяжелые остатки угле- и нефтепереработки) Протекает при более низких t и за более длительное время. Процесс проводят в области термодинамической стабильности высококонденсированных у/в. Их можно рассматривать как зародыши графитоподобных структур. Механизм -радикально-цепной.

Синтез углерода из пеков. Пеки - конденсированные ароматические и нафтеновые структуры. Стадии синтеза: Деструкция по связям С-С с образованием легких у/в радикалов и тяжелых макрорадикалов при t = 350-3600C. Конденсация макрорадикалов и образование пакетов (жидкая фаза) – мезофаза (промежуточное со
Слайд 15

Синтез углерода из пеков

Пеки - конденсированные ароматические и нафтеновые структуры. Стадии синтеза: Деструкция по связям С-С с образованием легких у/в радикалов и тяжелых макрорадикалов при t = 350-3600C. Конденсация макрорадикалов и образование пакетов (жидкая фаза) – мезофаза (промежуточное состояние). При t = 5000C переход реакционной массы в твердое состояние, называемое коксом. Твердофазные процессы (термодеструкция, конденсация и упорядочение структуры).

Требования к сырью. Отсутствие в сырье карбоидов (фракции нерастворимые в орг. растворителях) – они являются множественными центрами роста мезофазных частиц, которые оказываются слишком мелкими для формирования крупных областей анизотропии. Анизотропия – различие физических свойств в разных направле
Слайд 16

Требования к сырью

Отсутствие в сырье карбоидов (фракции нерастворимые в орг. растворителях) – они являются множественными центрами роста мезофазных частиц, которые оказываются слишком мелкими для формирования крупных областей анизотропии. Анизотропия – различие физических свойств в разных направлениях Отсутствие в сырье легких фракций – они снижают вязкость жидкой фазы при нагревании и разрушают частицы мезофазы

Список похожих презентаций

Новые вещества и материалы

Новые вещества и материалы

В последние десятилетия появилось множество материалов с полезными свойствами. Среди новых материалов,которые вошли в нашу жизнь можно назвать: полиуретан ...
Химические вещества: строительные и поделочные материалы

Химические вещества: строительные и поделочные материалы

Что такое глина?  мелкозернистая осадочная горная порода, пылевидная в сухом состоянии, пластичная при увлажнении. Глина состоит из одного или нескольких минералов группы  ...
Углеродные нанотрубки

Углеродные нанотрубки

Углеродные каркасные структуры. Новая аллотропная модификация углерода. Фуллерен С60. Углеродные нанотрубки. В 1991 году были обнаружены длинные, ...
Химические вещества и материалы

Химические вещества и материалы

Химия и искусство имеют внутреннюю общность, которая коренится в их творческой природе. Марселе Бертппо. Цель работы. Изучить различные виды живописи. ...
Строительные материалы

Строительные материалы

Строительные материалы:. материалы для возведения и ремонта зданий и сооружений. Строительные материалы и изделия, в соответствии с теорией ИСК, делятся ...
Синтетические материалы

Синтетические материалы

В настоящее время нет необходимости говорить о важной роли полимеров. Все живое состоит из полимеров:. знаете ли вы, что... полисахариды, белки и ...
Полимерные материалы и их применение

Полимерные материалы и их применение

Определение фотополимера. Полимер, изменяющий свои свойства под воздействием света, часто ультрафиолетового. Применяется в стоматологическом протезировании ...
Волокнистые материалы вокруг нас

Волокнистые материалы вокруг нас

Анкетирование учащихся. Цель работы: Задачи:. изучить основные виды волокнистых материалов, исследовать их качество и состав и научить моих одноклассников ...
Строение вещества химия

Строение вещества химия

СТРОЕНИЕ ВЕЩЕСТВА. Основополагающий вопрос КАК УСТРОЕН МИР? Проблемные вопросы Из чего сделано все на Земле? Почему все устроено так, а не иначе? ...
Своя игра. Физика и химия

Своя игра. Физика и химия

Интегрированный урок ФИЗИКА+ХИМИЯ. Авторы: Орлова И.В., Шувалова Л.В. Муниципальное образовательное учреждение Фоминская средняя общеобразовательная ...
Откуда ты, химия ?

Откуда ты, химия ?

Химические элементы. Роберт Бойль – впервые дал определение химического элемента. Джон Дальтон – впервые ввёл понятие атомного веса. А.М.Бутлеров ...
Органическая химия "Жиры"

Органическая химия "Жиры"

Рацион питания Белки Жиры Углеводы 2а, 2б 1 4б, 5. Роль жиров в здоровом питании спортсменов. Жиры хорошо усваиваются организмом, имеют высокую калорийность, ...
Органическая химия

Органическая химия

история развития органической химии предмет органической химии особенности органических веществ Бутлеров теория строения органических соединений Бутлерова ...
М.В. Ломоносов и химия

М.В. Ломоносов и химия

- М.В. Ломоносов был создателем многих химических производств (неорганических пигментов, глазурей, стекла, фарфора). - Он разработал технологию и ...
«Жиры» химия

«Жиры» химия

жиры. Оглавление. Определение и общая формула Физические свойства Химические свойства Классификация жиров Животные жиры Растительные жиры Роль жиров ...
Коллоидная химия

Коллоидная химия

Признаки объектов коллоидной химии. Поперечный размер частицы (а) – диаметр для сферических частиц (d) и длина ребра для кубических частиц (l). Дисперсность ...
Кто ты и откуда химия?

Кто ты и откуда химия?

Откуда пошло слов химия? Хи́мия (от араб. کيمياء‎‎, предположительно от египетского «chemi» — чёрный, откуда также греческое название Египта, чернозёма ...
«Задачи» химия

«Задачи» химия

- исследование задач по нанонауке; - ознакомление с наномиром: о достижениях нанохимии и нанотехнологии; - составление задач по нанонауке; - решение ...
Незнайка в стране химия

Незнайка в стране химия

Я – известный химик Незнайка. Я знаю все и все могу. Сейчас я взмахну волшебной палочкой и начнется извержение вулкана. Смотри! А теперь все за мной ...
«Нуклеиновые кислоты» химия

«Нуклеиновые кислоты» химия

Цель урока: сформировать у студентов понимание взаимосвязанности и взаимозависимости веществ в клетке. Задачи урока: повторить строение и основные ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:7 февраля 2019
Категория:Химия
Содержит:16 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации