Презентация "Генетика" (10 класс) по биологии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43

Презентацию на тему "Генетика" (10 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Биология. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 43 слайд(ов).

Слайды презентации

Генетика -. наука о законах и механизмах наследственности и изменчивости организмов.
Слайд 1

Генетика -

наука о законах и механизмах наследственности и изменчивости организмов.

Наследственность -. свойство организма передавать признаки строения, физиологические свойства и специфический характер индивидуального развития своему потомству.
Слайд 2

Наследственность -

свойство организма передавать признаки строения, физиологические свойства и специфический характер индивидуального развития своему потомству.

Изменчивость -. свойство организмов приобретать новые признаки при изменении наследственных задатков в процессе индивидуального развития организма при взаимодействии с внешней средой. Благодаря наследственности сохраняется однородность вида, а изменчивость, в противоположность наследственности, дела
Слайд 3

Изменчивость -

свойство организмов приобретать новые признаки при изменении наследственных задатков в процессе индивидуального развития организма при взаимодействии с внешней средой. Благодаря наследственности сохраняется однородность вида, а изменчивость, в противоположность наследственности, делает вид неоднородным.

ГРЕГОР МЕНДЕЛЬ. Тысячи лет механизм наследственности был окутан тайной. И только чешский монах Грегор Мендель в 1865 г. сформулировал первые законы наследственности.
Слайд 4

ГРЕГОР МЕНДЕЛЬ

Тысячи лет механизм наследственности был окутан тайной. И только чешский монах Грегор Мендель в 1865 г. сформулировал первые законы наследственности.

Им были разработаны следующие законы: 1 закон –закон доминирования 2 закон – закон расщепления 3 закон – закон независимого комбинирования. Эти законы называются законами Менделя.
Слайд 5

Им были разработаны следующие законы:

1 закон –закон доминирования 2 закон – закон расщепления 3 закон – закон независимого комбинирования. Эти законы называются законами Менделя.

Гомозиготные и гетерозиготные клетки. В гомозиготных клетках гомологичные хромосомы несут одну и ту же форму определенного гена. В гетерозиготных клетках гомологичные хромосомы несут разные (или аллельные) формы того или иного гена.
Слайд 6

Гомозиготные и гетерозиготные клетки

В гомозиготных клетках гомологичные хромосомы несут одну и ту же форму определенного гена. В гетерозиготных клетках гомологичные хромосомы несут разные (или аллельные) формы того или иного гена.

Доминантные и рецессивные аллели. Гены, расположенные в одних и тех же локусах гомологичных хромосом и ответственные за развитие одного признака, называются аллельными. Доминантные аллели обозначается большими буквами (A), а рецессивные – малыми (a).
Слайд 7

Доминантные и рецессивные аллели

Гены, расположенные в одних и тех же локусах гомологичных хромосом и ответственные за развитие одного признака, называются аллельными. Доминантные аллели обозначается большими буквами (A), а рецессивные – малыми (a).

Первый закон Менделя – закон (доминирования) единообразия. Для исследования были взяты образцы желтого и зеленого гороха.
Слайд 8

Первый закон Менделя – закон (доминирования) единообразия

Для исследования были взяты образцы желтого и зеленого гороха.

Скрещивание двух гомозиготных организмов. При скрещивании двух гомозиготных организмов, отличающихся по одной паре альтернативных признаков, все первое поколение гибридов F1 становится единообразным и будет нести признак одного родителя.
Слайд 9

Скрещивание двух гомозиготных организмов

При скрещивании двух гомозиготных организмов, отличающихся по одной паре альтернативных признаков, все первое поколение гибридов F1 становится единообразным и будет нести признак одного родителя.

Схема скрещивания Все потомство F1 будет единообразным (весь горох – желтый, т.к. А –доминантный ген несет желтый цвет)
Слайд 10

Схема скрещивания Все потомство F1 будет единообразным (весь горох – желтый, т.к. А –доминантный ген несет желтый цвет)

Моногибридное скрещивание. Потомство первого поколения F1 при скрещивании родительских форм, различающихся по одному признаку - АА и аа (моногибридное скрещивание), имеет одинаковый фенотип по этому признаку (Аа и Аа).
Слайд 11

Моногибридное скрещивание

Потомство первого поколения F1 при скрещивании родительских форм, различающихся по одному признаку - АА и аа (моногибридное скрещивание), имеет одинаковый фенотип по этому признаку (Аа и Аа).

Генотип и фенотип. Совокупность всех генов одного организма называется генотипом. Проявление всех признаков организма называется фенотипом.
Слайд 12

Генотип и фенотип

Совокупность всех генов одного организма называется генотипом.

Проявление всех признаков организма называется фенотипом.

Второй закон Менделя – закон расщепления. В потомстве гибридов первого поколения (поколение F2) наблюдается расщепление: появляются растения с признаками обоих родителей в определенных численных соотношениях: желтых семян примерно в три раза больше, чем зеленых, при полном их доминировании (75% особ
Слайд 13

Второй закон Менделя – закон расщепления

В потомстве гибридов первого поколения (поколение F2) наблюдается расщепление: появляются растения с признаками обоих родителей в определенных численных соотношениях: желтых семян примерно в три раза больше, чем зеленых, при полном их доминировании (75% особей с доминантным и 25% - с рецессивным признаком).

Рецессивные признаки. Доминантные признаки. По фенотипу происходит расщепление 3:1. Расщепление по генотипу 1 : 2 : 1
Слайд 14

Рецессивные признаки

Доминантные признаки

По фенотипу происходит расщепление 3:1

Расщепление по генотипу 1 : 2 : 1

СХЕМА СКРЕЩИВАНИЯ потомков первого поколения F1 Расщепление по генотипу 1:2:1, по фенотипу 3:1.
Слайд 15

СХЕМА СКРЕЩИВАНИЯ потомков первого поколения F1 Расщепление по генотипу 1:2:1, по фенотипу 3:1.

Неполное доминирование. Полное доминирование или полная рецессивность встречаются редко, часто у гетерозигот оба аллеля могут образовывать промежуточные признаки, уклоняющиеся в сторону доминантного или рецессивного аллеля. В таком случае говорят о промежуточном характере наследования (Мендель наблю
Слайд 16

Неполное доминирование

Полное доминирование или полная рецессивность встречаются редко, часто у гетерозигот оба аллеля могут образовывать промежуточные признаки, уклоняющиеся в сторону доминантного или рецессивного аллеля. В таком случае говорят о промежуточном характере наследования (Мендель наблюдал это явление в опытах с ночной красавицей).

При неполном доминировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм (расщепление по типу 1:2:1).
Слайд 17

При неполном доминировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм (расщепление по типу 1:2:1).

Суть в том, что в гетерозиготном состоянии доминантный ген не всегда подавляет проявление рецессивного гена, поэтому гибрид F1 не воспроизводит полностью ни одного из родительских признаков. Выражение признака носит промежуточный характер с большим или меньшим уклонением к доминантному или рецессивн
Слайд 18

Суть в том, что в гетерозиготном состоянии доминантный ген не всегда подавляет проявление рецессивного гена, поэтому гибрид F1 не воспроизводит полностью ни одного из родительских признаков. Выражение признака носит промежуточный характер с большим или меньшим уклонением к доминантному или рецессивному состоянию.

Дигибридное скрещивание. В природных условиях скрещивание обычно происходит между особями, различающимися по многим признакам.
Слайд 19

Дигибридное скрещивание

В природных условиях скрещивание обычно происходит между особями, различающимися по многим признакам.

Третий закон Менделя. Рассмотрим закономерности расщепления признаков при дигибридном скрещивании.
Слайд 20

Третий закон Менделя

Рассмотрим закономерности расщепления признаков при дигибридном скрещивании.

Формулировка 3-его закона. При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.
Слайд 21

Формулировка 3-его закона

При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Согласно третьему закону Менделя, расщепление по каждой паре признаков идет независимо от других пар признаков. В результате среди потомков второго поколения (F2) в определенном соотношении появляются особи с новыми (по отношению к родительским) комбинациями генов. При скрещивании организмов, различ
Слайд 22

Согласно третьему закону Менделя, расщепление по каждой паре признаков идет независимо от других пар признаков. В результате среди потомков второго поколения (F2) в определенном соотношении появляются особи с новыми (по отношению к родительским) комбинациями генов. При скрещивании организмов, различающихся по двум или нескольким доминантным признакам, число возникающих во втором поколении гибридов больше, чем разных фенотипов.

При дигибридном скрещивании возникает четыре разных фенотипа (а при моногибридном - два). Большинство из них слагается из нескольких генотипов. Так, среди растений гороха, имеющих желтые гладкие семена, можно выделить четыре разных генотипа: гомозиготы (ААВВ), гетерозиготы по признаку окраски семян
Слайд 23

При дигибридном скрещивании возникает четыре разных фенотипа (а при моногибридном - два). Большинство из них слагается из нескольких генотипов. Так, среди растений гороха, имеющих желтые гладкие семена, можно выделить четыре разных генотипа: гомозиготы (ААВВ), гетерозиготы по признаку окраски семян (АаВВ), гетерозиготы по признаку формы семян (ААВb) и, наконец, гетерозиготы по обеим парам аллелей (АаВb).

Растения с желтыми морщинистыми семенами представлены двумя генотипами: гомозиготами АAbb и гетерозиготами Ааbb. Два генотипа включают фенотип с зелеными гладкими семенами: ааВВ и ааВb. Рецессивные формы с морщинистыми зелеными семенами всегда гомозиготны и представлены одним генотипом ааbb. Таким о
Слайд 24

Растения с желтыми морщинистыми семенами представлены двумя генотипами: гомозиготами АAbb и гетерозиготами Ааbb. Два генотипа включают фенотип с зелеными гладкими семенами: ааВВ и ааВb. Рецессивные формы с морщинистыми зелеными семенами всегда гомозиготны и представлены одним генотипом ааbb. Таким образом, при дигибридном скрещивании образовалось девять генотипов (из 16 возможных комбинаций).

Отношение числа желтых семян (А) к зеленым (а) равняется 12:4 (3:1), как и отношение гладких семян (В) к морщинистым (в).
Слайд 25

Отношение числа желтых семян (А) к зеленым (а) равняется 12:4 (3:1), как и отношение гладких семян (В) к морщинистым (в).

Анализирующее скрещивание. Проводят с целью выявления состава генотипа каких-либо организмов, имеющих доминантный генотип по исследуемому гену или генам. Для этого скрещивают особь с неизвестным генотипом и организм гомозиготный по рецессивной аллели, имеющий рецессивный фенотип.
Слайд 26

Анализирующее скрещивание

Проводят с целью выявления состава генотипа каких-либо организмов, имеющих доминантный генотип по исследуемому гену или генам. Для этого скрещивают особь с неизвестным генотипом и организм гомозиготный по рецессивной аллели, имеющий рецессивный фенотип.

Схема анализирующего скрещивания. ХХ – неизвестный генотип Расщепление 50:50, следовательно, неизвестный генотип – Аа.
Слайд 27

Схема анализирующего скрещивания

ХХ – неизвестный генотип Расщепление 50:50, следовательно, неизвестный генотип – Аа.

Все потомство единообразное, следовательно неизвестный генотип - АА.
Слайд 28

Все потомство единообразное, следовательно неизвестный генотип - АА.

Томас Морган (1866 -1945) - американский биолог, один и основоположников генетики. Работы Моргана и его школы обосновали хромосомную теорию наследственности
Слайд 29

Томас Морган (1866 -1945) - американский биолог, один и основоположников генетики. Работы Моргана и его школы обосновали хромосомную теорию наследственности

Явление сцепления генов, локализованных в одной хромосоме, называется законом Моргана. Гены, расположенные в одной паре гомологичных хромосом, наследуются вместе. Явление совместного наследования генов, локализованных в одной хромосоме, называется сцепленным наследованием.
Слайд 30

Явление сцепления генов, локализованных в одной хромосоме, называется законом Моргана.

Гены, расположенные в одной паре гомологичных хромосом, наследуются вместе. Явление совместного наследования генов, локализованных в одной хромосоме, называется сцепленным наследованием.

Большинство доказательств в пользу хромосомной теории наследственности было получено на основании опытов с плодовой мушкой дрозофиллой. В частности явление сцепления генов, локализованных в одной хромосоме, было изучено на дрозофиллах.
Слайд 31

Большинство доказательств в пользу хромосомной теории наследственности было получено на основании опытов с плодовой мушкой дрозофиллой. В частности явление сцепления генов, локализованных в одной хромосоме, было изучено на дрозофиллах.

Хромосомная теория наследственности. Каждый ген имеет определенное место (локус) в хромосоме; Гены расположены в хромосоме в определенной последовательности; Частота кроссинговера между генами пропорциональна расстоянию между ними.
Слайд 32

Хромосомная теория наследственности

Каждый ген имеет определенное место (локус) в хромосоме; Гены расположены в хромосоме в определенной последовательности; Частота кроссинговера между генами пропорциональна расстоянию между ними.

Каждый вид растений и животных обладает определенным числом хромосом. В соматических клетках (клетках тела) все хромосомы парные (за исключением половых).
Слайд 33

Каждый вид растений и животных обладает определенным числом хромосом. В соматических клетках (клетках тела) все хромосомы парные (за исключением половых).

Хромосомы в ядре клетки. Хромосомы – носители наследственной информации в ядре клетки состоят из молекул ДНК (дезоксирибонуклеиновой кислоты ). В свою очередь состоящих из 4-х оснований (аденин, гуанин. Тимин, цитозин), которые имеют прочные связи и дополняются углеводами и остатками фосфорной кисло
Слайд 34

Хромосомы в ядре клетки

Хромосомы – носители наследственной информации в ядре клетки состоят из молекул ДНК (дезоксирибонуклеиновой кислоты ). В свою очередь состоящих из 4-х оснований (аденин, гуанин. Тимин, цитозин), которые имеют прочные связи и дополняются углеводами и остатками фосфорной кислоты. Эти четыре основания являются четырьмя буквами генетического кода, последовательность которых у каждого организма и определяет генетический код.

Хромосомы находятся в ядре клетки. Ядро
Слайд 35

Хромосомы находятся в ядре клетки

Ядро

ДНК – дезоксирибонуклеиновая кислота. Объемная модель ДНК
Слайд 36

ДНК – дезоксирибонуклеиновая кислота

Объемная модель ДНК

Строение ДНК. В ДНК входят: нуклеотиды (аденин, тимин, гуанин, цитозин); углевод – дезоксирибоза и остатки фосфорной кислоты
Слайд 37

Строение ДНК

В ДНК входят: нуклеотиды (аденин, тимин, гуанин, цитозин); углевод – дезоксирибоза и остатки фосфорной кислоты

Молекула ДНК, состоящая из двух спиралей, удваивается при делении клетки. Удвоение ДНК основано на том, что при расплетении нитей к каждой нити можно достроить комплементарную копию, таким образом получая две нити молекулы ДНК, копирующие исходную.
Слайд 38

Молекула ДНК, состоящая из двух спиралей, удваивается при делении клетки. Удвоение ДНК основано на том, что при расплетении нитей к каждой нити можно достроить комплементарную копию, таким образом получая две нити молекулы ДНК, копирующие исходную.

Нуклеотиды- аденин, тимин, гуанин, цитозин. Исследуя состав ДНК, известный ученый Чаргафф пришел к следующим заключениям (правила Чаргаффа): 1. Состав азотистых оснований в ДНК варьирует от одного вида растений и животных к другому. 2. Образцы ДНК, выделенные из органов и тканей одного вида растения
Слайд 39

Нуклеотиды- аденин, тимин, гуанин, цитозин

Исследуя состав ДНК, известный ученый Чаргафф пришел к следующим заключениям (правила Чаргаффа): 1. Состав азотистых оснований в ДНК варьирует от одного вида растений и животных к другому. 2. Образцы ДНК, выделенные из органов и тканей одного вида растения или животного, имеют одинаковый состав азотистых оснований. 3. Состав оснований в ДНК данного вида не изменяется с его возрастом, условиями питания, не зависит от изменений в окружающей среде. 4. Во всех ДНК независимо от вида число остатков аденина равно числу остатков тимина (А=Т), число остатков гуанина равно числу остатков цитозина (G=C). Сумма пуриновых остатков равна сумме пиримидиновых остатков (A+G=T+C).

Нарушение сцепления. Перекомбинация генов обусловлена тем, что в процессе мейоза при конъюгации(сближении) гомологичных хромосом они иногда обмениваются своими участками, т.е. между ними происходит перекрест (кроссинговер). Мейоз – период созревания гамет – половых клеток.
Слайд 40

Нарушение сцепления

Перекомбинация генов обусловлена тем, что в процессе мейоза при конъюгации(сближении) гомологичных хромосом они иногда обмениваются своими участками, т.е. между ними происходит перекрест (кроссинговер). Мейоз – период созревания гамет – половых клеток.

Схема перекреста хромосом
Слайд 41

Схема перекреста хромосом

Схематическое изображение механизма кроссинговера. КРОССИНГОВЕР (англ. crossing-over), взаимный обмен участками гомологичных (парных) хромосом, приводящий к перераспределению (рекомбинации) локализованных в них генов.
Слайд 42

Схематическое изображение механизма кроссинговера. КРОССИНГОВЕР (англ. crossing-over), взаимный обмен участками гомологичных (парных) хромосом, приводящий к перераспределению (рекомбинации) локализованных в них генов.

Овечка Долли. Появление на свет овечки Доли стало возможным благодаря достижениям науки генетики.
Слайд 43

Овечка Долли

Появление на свет овечки Доли стало возможным благодаря достижениям науки генетики.

Список похожих презентаций

Генетика пола наследование, сцепленное с полом

Генетика пола наследование, сцепленное с полом

Пол - это совокупность морфологических, физиологических, биохимических и других признаков организма, обусловливающих воспроизведение себе подобного. ...
Генетика пола. Наследование, сцепленное с полом

Генетика пола. Наследование, сцепленное с полом

Цель урока:. Изучить сущность хромосомного определения пола и механизм наследования генов, сцепленных с полом. Анализирующее скрещивание. 1-й случай ...
Генетика пола

Генетика пола

Определение пола. Пол - это совокупность морфологических, физиологических, биохимических, поведенческих и других признаков организма, обеспечивающих ...
Генетика пола и наследование сцеплённое с полом

Генетика пола и наследование сцеплённое с полом

Кто родится? Как всем известно, у человека 23пары хромосом ,22 пары соматических и 1 пара половых. XX-. гомогаметные (женские). XY-. ГЕТЕРОГАМЕТНЫЕ ...
Генетика человека

Генетика человека

Об авторе. Ефимова Галина Владимировна Учитель химии и биологии , Заслуженный работник образования РМЭ. Пояснительная записка. Биологические науки ...
Генетика

Генетика

Методы наследования генетики человека. Генеалогический Популяционный Близнецовый Цитогенетический Биохимический. Генеалогический. -позволяет,используя ...
Генетика бактерий

Генетика бактерий

План лекции: 1. Генетический материал бактерий. 2. Плазмиды бактерий и их основные функции. 3. Фенотипическая изменчивость. Модификации бактерий: ...
Генетика человека

Генетика человека

На людях невозможны прямые эксперименты, однако науке известно многое о наследственности человека. ЦЕЛЬ РАБОТЫ. 1.Теории рождения девочек и мальчиков. ...
Генетика – прошлое, настоящее, будущее

Генетика – прошлое, настоящее, будущее

Доказать, что генетика имеет славное прошлое, увлекательное настоящее и обещает захватывающее будущее. Цель проекта. Прошлое генетики. Открытие законов ...
Генетика аддиктивного поведения

Генетика аддиктивного поведения

Преступность и наследственность. Около 70 лет назад появились первые работы, в которых МЗ и ДЗ близнецы сравнивались по склонности к преступному поведению. ...
Генетика

Генетика

История становления науки. 1865 г – чех Грегор Мендель впервые установил закономерности наследования признаков. 1900 г – год рождения генетики голландец ...
Генетика

Генетика

План лекции. Строение генетического аппарата клетки. Внехромосомные элементы наследственности. Мутации. Рекомбинации. Основы генной инженерии. Генетика ...
Генетика

Генетика

животных человека растений микроорганизмов молекулярная экологическая. Законы Грегори Менделя. Закон Единообразия гибридов первого поколения. Закон ...
Генетика пола. наследование, сцепленное с полом

Генетика пола. наследование, сцепленное с полом

Воспроизведение жизни это и есть Наследственность, в ней проявляется Инвариантная сторона жизненных явлений, принцип сохранения жизни. Академик Н.П. ...
Генетика бактерий и вирусов

Генетика бактерий и вирусов

Вирустарды зерттеу жұмыстары. Вирустардың пішіндері әртүрлі болып келеді. Вирустардың пішіндері мен өлшемдері. Вирустардың ұзындығы 20 нм-ден 500 ...
Генетика популяций

Генетика популяций

1.Свойство организмов приобретать новые признаки. 2.Ввел термин «биология». 3.Наука о создании новых пород животных и сортов растений. 4. Необратимое ...
Генетика и здоровье человека

Генетика и здоровье человека

Цель урока:. познакомиться с наследственными заболеваниями; их причинами возникновения и способами лечения или недопущения таких заболеваний. Виды ...
Генетика человека

Генетика человека

Особенности изучения генетики человека. Наследственность и изменчивость – всеобщие свойства живых организмов. Основные закономерности генетики имеют ...
Генетика и медицина

Генетика и медицина

И. –С. Бах. ТРУДНОСТИ ПРИ ИЗУЧЕНИИ НАСЛЕДСТВЕННОСТИ ЧЕЛОВЕКА. Медленная смена поколений; Потомство не многочисленно; Сложный хромосомный набор; Невозможность ...
Генетика человека. Генеалогический и близнецовый методы

Генетика человека. Генеалогический и близнецовый методы

В 1929 г. советский генетик, невропатолог С.Н.Давиденко организовал первую в мире медико-генетическую консультацию. Он первым в мире поставил вопрос ...

Конспекты

Сцепленное наследование. Генетика пола

Сцепленное наследование. Генетика пола

Урок "Сцепленное наследование. Генетика пола". 9-й класс, биология. Василинчук Ирина Сергеевна. ,.  . учитель биологии. Разделы:.  . Преподавание ...
Сцепленное наследование. Генетика пола

Сцепленное наследование. Генетика пола

Урок "Сцепленное наследование. Генетика пола". . . 9-й класс, биология. Учитель биологии:. Иванищев Константин Владимирович. Задачи:. Сформировать ...
Генетика пола. Сцепленное с полом наследование

Генетика пола. Сцепленное с полом наследование

. Урок биологии в 9 классе. Генетика пола. Сцепленное с полом наследование. Тип урока. Комбинированный Цели урока. показать каким образом ...
Генетика человека

Генетика человека

Конспект урока на тему:. «Генетика человека». По учебнику. Общая биология под редакцией Д. К. Беляева, Г. М. Дымшица. Учитель высшей категории ...
Генетика пола. Наследование, сцепленное с полом

Генетика пола. Наследование, сцепленное с полом

УРОК «Генетика пола. Наследование, сцепленное с полом». Кущева С.И. - учитель биологии высшей квалификационной категории МКОУ Манинская СОШ. . ...
Генетика пола. Наследование признаков, сцепленных с полом

Генетика пола. Наследование признаков, сцепленных с полом

Тема урока: «Генетика пола. Наследование признаков, сцепленных с полом». Цель урока:. 1. изучить сущность хромосомного определения пола; 2. механизм ...
Генетика пола. Наследование признаков сцепленных с полом

Генетика пола. Наследование признаков сцепленных с полом

Конспект урока. Генетика пола. Наследование признаков сцепленных с полом. Цель:. Формирование знаний о хромосомном определении пола, сцепленном ...
Генетика пола и наследование групп крови

Генетика пола и наследование групп крови

Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа №82» г.Перми. Конспект урока по биологии ...
Генетика – наука о наследственности и изменчивости

Генетика – наука о наследственности и изменчивости

6. . . Генетика – наука о наследственности и изменчивости. Урок биологии в 9 классе. Учитель высшей категории Коврова Т.В. МОУСОШ №2 ЗАТО ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:9 января 2019
Категория:Биология
Содержит:43 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации