- Трансцендентные кривые

Презентация "Трансцендентные кривые" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33

Презентацию на тему "Трансцендентные кривые" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 33 слайд(ов).

Слайды презентации

Федеральное государственное образовательное учреждение среднего профессионального образования «Димитровградский технический колледж» Проект по теме: «Трансцендентные кривые» Выполнил: Семенов Алексей Руководитель: Кузьмина В.В.
Слайд 1

Федеральное государственное образовательное учреждение среднего профессионального образования «Димитровградский технический колледж» Проект по теме: «Трансцендентные кривые» Выполнил: Семенов Алексей Руководитель: Кузьмина В.В.

Содержание. Класс трансцендентных кривых Определение трансцендентной кривой Квадратриса Трактриса Цепная линия Циклоида Архимедова спираль Гиперболическая спираль Логарифмическая спираль Спираль Корню, клотоида Трохоида Гипоциклоида Эпициклоида
Слайд 2

Содержание

Класс трансцендентных кривых Определение трансцендентной кривой Квадратриса Трактриса Цепная линия Циклоида Архимедова спираль Гиперболическая спираль Логарифмическая спираль Спираль Корню, клотоида Трохоида Гипоциклоида Эпициклоида

Большой интересный класс составляют трансцендентные кривые. К ним относятся графики тригонометрических функций (синусоида, тангенсоида), логарифмической функции, показательной функции, гиперболических функций, а также много других линий, которые будут рассмотрены в дальнейшем.
Слайд 3

Большой интересный класс составляют трансцендентные кривые

К ним относятся графики тригонометрических функций (синусоида, тангенсоида), логарифмической функции, показательной функции, гиперболических функций, а также много других линий, которые будут рассмотрены в дальнейшем.

Трансцендентная кривая. Трансцендентная кривая - это кривая, уравнение которой в декартовой системе координат не является алгебраическим ( в других системах координат может быть алгебраическим.). Логарифмическая спираль
Слайд 4

Трансцендентная кривая

Трансцендентная кривая - это кривая, уравнение которой в декартовой системе координат не является алгебраическим ( в других системах координат может быть алгебраическим.)

Логарифмическая спираль

Квадратриса. Квадратриса (или Квадратрисса) — плоская трансцендентная кривая, определяемая кинематически. Открыта, по сообщению Прокла Диадоха, софистом Гиппием (V век до н. э.), использовалась в античные времена для решения задач квадратуры круга и трисекции угла.
Слайд 5

Квадратриса

Квадратриса (или Квадратрисса) — плоская трансцендентная кривая, определяемая кинематически. Открыта, по сообщению Прокла Диадоха, софистом Гиппием (V век до н. э.), использовалась в античные времена для решения задач квадратуры круга и трисекции угла.

Уравнения. В полярных координатах: В прямоугольных координатах можно записать уравнение квадратрисы в следующем виде:
Слайд 6

Уравнения

В полярных координатах: В прямоугольных координатах можно записать уравнение квадратрисы в следующем виде:

Трактриса. Трактриса (линия влечения) — (от лат. trahere — тащить) — плоская трансцендентная кривая, для которой длина отрезка касательной от точки касания до точки пересечения с фиксированной прямой является постоянной величиной. Такую линию описывает предмет, волочащийся на верёвке длины a за точк
Слайд 7

Трактриса

Трактриса (линия влечения) — (от лат. trahere — тащить) — плоская трансцендентная кривая, для которой длина отрезка касательной от точки касания до точки пересечения с фиксированной прямой является постоянной величиной. Такую линию описывает предмет, волочащийся на верёвке длины a за точкой, движущейся по оси абсцисс. Трактриса также является частью кривой погони при равной скорости догоняющего и убегающего.

Параметрическое описание: Уравнение в декартовых координатах:
Слайд 8

Параметрическое описание: Уравнение в декартовых координатах:

Цепная линия. Цепная линия — линия, форму которой принимает гибкая однородная нерастяжимая тяжелая нить или цепь (отсюда название) с закрепленными концами в однородном гравитационном поле. Является плоской трансцендентной кривой. Уравнение в декартовой системе координат
Слайд 9

Цепная линия

Цепная линия — линия, форму которой принимает гибкая однородная нерастяжимая тяжелая нить или цепь (отсюда название) с закрепленными концами в однородном гравитационном поле. Является плоской трансцендентной кривой.

Уравнение в декартовой системе координат

Краткая историческая справка. Поверхность, образованная вращением дуги цепной линии вокруг оси Оx, называется катеноидом. Цепные линии используются в расчетах, связанных с провисанием проводов, тросов и т.п. Форму кривой провисания впервые рассматривал Г. Галилей (1638), который считал ее параболой.
Слайд 10

Краткая историческая справка

Поверхность, образованная вращением дуги цепной линии вокруг оси Оx, называется катеноидом. Цепные линии используются в расчетах, связанных с провисанием проводов, тросов и т.п. Форму кривой провисания впервые рассматривал Г. Галилей (1638), который считал ее параболой. Истинная форма кривой найдена Г. Лейбницем, Я. и И. Бернулли, Х. Гюйгенсом. Х. Гюйгенс предложил термин «Цепная линия»

Применение. Арки Перевёрнутая цепная линия — идеальная форма для арок. Однородная арка в форме перевёрнутой цепной линии испытывает только деформации сжатия, но не излома. Мосты Горбатый мост имеет форму, близкую к цепной линии. Стоит заметить, что цепь подвесного моста имеет форму параболы, а не це
Слайд 11

Применение

Арки Перевёрнутая цепная линия — идеальная форма для арок. Однородная арка в форме перевёрнутой цепной линии испытывает только деформации сжатия, но не излома. Мосты Горбатый мост имеет форму, близкую к цепной линии. Стоит заметить, что цепь подвесного моста имеет форму параболы, а не цепной линии. Это связано с тем, что пролёт моста намного тяжелее цепи.

ЦИКЛОИДА. Циклоида (от греч.— круглый) — плоская трансцендентная кривая. Циклоида определяется кинематически как траектория фиксированной точки производящей окружности радиуса r, катящейся без скольжения по прямой.
Слайд 12

ЦИКЛОИДА

Циклоида (от греч.— круглый) — плоская трансцендентная кривая. Циклоида определяется кинематически как траектория фиксированной точки производящей окружности радиуса r, катящейся без скольжения по прямой.

Примем горизонтальную ось координат в качестве прямой, по которой катится производящая окружность радиуса r. Циклоида описывается параметрическими уравнениями: Уравнение в декартовых координатах: Циклоида может быть получена как решение дифференциального уравнения: x = rt − rsint, y = r − rcost.
Слайд 13

Примем горизонтальную ось координат в качестве прямой, по которой катится производящая окружность радиуса r. Циклоида описывается параметрическими уравнениями: Уравнение в декартовых координатах: Циклоида может быть получена как решение дифференциального уравнения:

x = rt − rsint, y = r − rcost.

У циклоиды масса любопытнейших свойств. Оказывается, например, что циклоида является кривой наибыстрейшего спуска. Иначе говоря, скатываясь по снежной горке, профиль которой выполнен в виде циклоиды, мы окажемся у основания горки быстрее, чем в случае другой формы горки. Траектория конца маятника, к
Слайд 14

У циклоиды масса любопытнейших свойств. Оказывается, например, что циклоида является кривой наибыстрейшего спуска. Иначе говоря, скатываясь по снежной горке, профиль которой выполнен в виде циклоиды, мы окажемся у основания горки быстрее, чем в случае другой формы горки. Траектория конца маятника, как и ограничивающие его боковые "щеки", представляют из себя циклоиду

Архимедова спираль. Архимедова спираль — плоская кривая, траектория точки M (см Рис. 1), которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV. Повороту луча OV на о
Слайд 15

Архимедова спираль

Архимедова спираль — плоская кривая, траектория точки M (см Рис. 1), которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV. Повороту луча OV на один и тот же угол соответствует одно и то же приращение ρ.

Вычисление длины дуги Архимедовой спирали. Бесконечно малый отрезок дуги dl равен (см. Рис.): , где dρ — приращение радиуса ρ, при приращении угла φ на dφ. Для бесконечно малого приращения угла dφ, справедливо: . Поэтому: так как ρ = kφ и dρ = kdφ или . Длина дуги L равна интегралу от dl по dφ в пре
Слайд 16

Вычисление длины дуги Архимедовой спирали

Бесконечно малый отрезок дуги dl равен (см. Рис.): , где dρ — приращение радиуса ρ, при приращении угла φ на dφ. Для бесконечно малого приращения угла dφ, справедливо: . Поэтому: так как ρ = kφ и dρ = kdφ или . Длина дуги L равна интегралу от dl по dφ в пределах от 0 до φ: .

Спирали в природе и технике. Спирали в нашей жизни встречаются на каждом углу от простых вентиляторов и тисков, до паутины и винтов моторных лодок.
Слайд 17

Спирали в природе и технике

Спирали в нашей жизни встречаются на каждом углу от простых вентиляторов и тисков, до паутины и винтов моторных лодок.

Трансцендентные кривые Слайд: 18
Слайд 18
Трансцендентные кривые Слайд: 19
Слайд 19
Спиральные галактики
Слайд 20

Спиральные галактики

Гиперболическая спираль — плоская трансцендентная кривая. Уравнение гиперболической спирали в полярной системе координат является обратным для уравнения Архимедовой спирали и записывается так:
Слайд 21

Гиперболическая спираль — плоская трансцендентная кривая. Уравнение гиперболической спирали в полярной системе координат является обратным для уравнения Архимедовой спирали и записывается так:

Уравнение гиперболической спирали в декартовых координатах: Параметрическая запись уравнения: Спираль имеет асимптоту y = a: при t стремящемся к нулю ордината стремится к a, а абсцисса уходит в бесконечность:
Слайд 22

Уравнение гиперболической спирали в декартовых координатах: Параметрическая запись уравнения: Спираль имеет асимптоту y = a: при t стремящемся к нулю ордината стремится к a, а абсцисса уходит в бесконечность:

ЛОГАРИФМИЧЕСКАЯ СПИРАЛЬ - плоская трансцендентная кривая, пересекающая все радиусы-векторы под одним и тем же углом (рис.1). Уравнение в полярных координатах: При a > 1 и логарифмическая спираль развертывается против хода часовой стрелки, при спираль закручивается по ходу часовой стрелки, стремяс
Слайд 23

ЛОГАРИФМИЧЕСКАЯ СПИРАЛЬ - плоская трансцендентная кривая, пересекающая все радиусы-векторы под одним и тем же углом (рис.1). Уравнение в полярных координатах: При a > 1 и логарифмическая спираль развертывается против хода часовой стрелки, при спираль закручивается по ходу часовой стрелки, стремясь к своей асимптотической точке O. Если a

Логарифмическая спираль относится к псевдоспиралям. Логарифмическая спираль переходит в себя при линейных преобразованиях плоскости: её Эволюта, подера – также логарифмическая спираль. При стереографической проекции плоскости на сферу логарифмическая спираль переходит в локсодромию. Логарифмическая
Слайд 24

Логарифмическая спираль относится к псевдоспиралям. Логарифмическая спираль переходит в себя при линейных преобразованиях плоскости:

её Эволюта, подера – также логарифмическая спираль. При стереографической проекции плоскости на сферу логарифмическая спираль переходит в локсодромию. Логарифмическая спираль широко используется в технике:

Логарифмическая спираль выполняет профиль вращающихся ножей и фриз, зубчатых передач и др. По логарифмической спирали очерчены некоторые раковины, по дугам, близким к логарифмической спирали, расположены семечки в подсолнухе, чешуйки в шишках и т.д.
Слайд 25

Логарифмическая спираль выполняет профиль вращающихся ножей и фриз, зубчатых передач и др.

По логарифмической спирали очерчены некоторые раковины, по дугам, близким к логарифмической спирали, расположены семечки в подсолнухе, чешуйки в шишках и т.д.

Клотоида или Спираль Корню — кривая, у которой кривизна изменяется линейно как функция длины дуги. Она используется как переходная дуга в дорожном строительстве. Когда участок дороги имеет форму клотоиды, руль поворачивается равномерно. Такая форма дороги позволяет преодолевать поворот без существен
Слайд 26

Клотоида или Спираль Корню — кривая, у которой кривизна изменяется линейно как функция длины дуги. Она используется как переходная дуга в дорожном строительстве. Когда участок дороги имеет форму клотоиды, руль поворачивается равномерно. Такая форма дороги позволяет преодолевать поворот без существенного снижения скорости. Клотоида применялась Корню для облегчения расчёта дифракции в прикладных задачах.

Описывается параметрическими уравнениями. где , где R — радиус неподвижной окружности, r — радиус катящейся окружности. Модуль величины k определяет форму гипоциклоиды. При k = 2 гипоциклоида представляет собой диаметр неподвижной окружности, при k = 4 является астроидой.
Слайд 27

Описывается параметрическими уравнениями

где , где R — радиус неподвижной окружности, r — радиус катящейся окружности. Модуль величины k определяет форму гипоциклоиды. При k = 2 гипоциклоида представляет собой диаметр неподвижной окружности, при k = 4 является астроидой.

Трохоида. Трохоида (от греч. τροχοειδής — колесообразный) — плоская трансцендентная кривая, описываемая параметрическими уравнениями x = rt − hsint, y = r − hcost. Представляет собой траекторию точки, жёстко связанной с окружностью радиуса r, катящейся без скольжения по прямой (в приведённом примере
Слайд 28

Трохоида

Трохоида (от греч. τροχοειδής — колесообразный) — плоская трансцендентная кривая, описываемая параметрическими уравнениями x = rt − hsint, y = r − hcost. Представляет собой траекторию точки, жёстко связанной с окружностью радиуса r, катящейся без скольжения по прямой (в приведённом примере такой прямой является горизонтальная ось координат). Расстояние точки от центра окружности — h. Если h = r трохоида переходит в циклоиду. При h > r трохоиду называют удлинённой циклоидой, а при h

Гипоциклоида. Гипоциклоида (от греческих слов ὑπό — под, внизу и κύκλος — круг, окружность) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.
Слайд 29

Гипоциклоида

Гипоциклоида (от греческих слов ὑπό — под, внизу и κύκλος — круг, окружность) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.

Эпициклоида. Эпициклоида (от греч. ὲπί — на, над, при и κυκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по другой окружности.
Слайд 30

Эпициклоида

Эпициклоида (от греч. ὲπί — на, над, при и κυκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по другой окружности.

Если центр неподвижной окружности находится в начале координат, её радиус равен R, радиус катящейся по ней окружности равен r, то эпициклоида описывается параметрическими уравнениями относительно : где α — угол поворота эпициклоиды относительно центра неподвижной окружности, — параметр, но фактическ
Слайд 31

Если центр неподвижной окружности находится в начале координат, её радиус равен R, радиус катящейся по ней окружности равен r, то эпициклоида описывается параметрическими уравнениями относительно : где α — угол поворота эпициклоиды относительно центра неподвижной окружности, — параметр, но фактически это угол наклона отрезка между центрами к оси OX. Можно ввести величину , тогда уравнения предстанут в виде

Последнее уравнение выражает такое кинематическое свойство эпициклоиды: если дуга обычной эпициклоиды перекатывается без скольжения по прямой, то центр кривизны точки касания двигается по эллипсу; центр эллипса лежит в той точке прямой, через которую перекатывается вершина эпициклоиды.
Слайд 32

Последнее уравнение выражает такое кинематическое свойство эпициклоиды: если дуга обычной эпициклоиды перекатывается без скольжения по прямой, то центр кривизны точки касания двигается по эллипсу; центр эллипса лежит в той точке прямой, через которую перекатывается вершина эпициклоиды.

Информационные источники. Литература 1. Большой энциклопедический словарь «Математика», Гл. редактор Ю.В. Прохоров, Научное изд-во «Большая Российская Энциклопедия», М.: 1998 2. Д.В. Клетеник Сборник задач по аналитической геометрии под ред. проф. Н.В.Ефимова, Государственное изд-во физико-математич
Слайд 33

Информационные источники

Литература 1. Большой энциклопедический словарь «Математика», Гл. редактор Ю.В. Прохоров, Научное изд-во «Большая Российская Энциклопедия», М.: 1998 2. Д.В. Клетеник Сборник задач по аналитической геометрии под ред. проф. Н.В.Ефимова, Государственное изд-во физико-математической литературы, М.: 1960 3. Математическая энциклопедия. Главный редактор И.М. Виноградов, т.3 – М.: «Советская энциклопедия», 1982 Интернет ресурсы: www.college.ru www.gee.ru

Список похожих презентаций

Замечательные кривые вокруг нас

Замечательные кривые вокруг нас

Спираль Архимеда. Спираль Архимеда - немного истории. Спираль Архимеда мы видим. Синусоида. Синусоида – немного истории. Синусоиду мы видим. Конхоида ...
Удивительные кривые линии Секция прикладной математики

Удивительные кривые линии Секция прикладной математики

Краткая аннотация. В работе указаны три способа задания кривых линий. Приведены примеры кривых линий. При написании работы применялись, в большинстве ...
Замечательные кривые в математике

Замечательные кривые в математике

Что же такое кривая линия? В рамках элементарной геометрии понятие кривой не получает отчётливой формулировки и иногда определяется как «длина без ...
Замечательные кривые

Замечательные кривые

Полярная роза — известная математическая кривая, похожая на цветок с лепестками. Она может быть определена простым уравнением в полярных координатах: ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Неевклидова геометрия

Неевклидова геометрия

Мы выбрали эту тему так как она нас очень заинтересовала тем , что геометрия Лобачевского очень полезна в современном мире, и мы хотим немного рассказать ...
«Ломаная» геометрия

«Ломаная» геометрия

Найдите соответствие. Ответы. Ломаная Тема урока:. Какие из фигур являются ломаными? А Б В Г Д. Ответ А В Г. Кусок проволоки возьми И его ты перегни. ...
Небесная геометрия

Небесная геометрия

Цели и задачи. Цель: дать физическое и математическое обоснование разнообразия форм снежинок. Задачи: изучить историю появления фотографий с изображениями ...
Фракталы – геометрия природы

Фракталы – геометрия природы

Задачи:. узнать, что такое «фракталы»; изучить историю возникновения и развития фрактальной геометрии; ознакомиться с биографией создателя фракталов ...
Что такое геометрия

Что такое геометрия

Геометрия- одна из наиболее древних наук. Первые геометрические факты были найдены…. В Вавилонских клинописных таблицах и египетских папируса (III ...
Построение сечений многогранников геометрия

Построение сечений многогранников геометрия

Обучающая цель: формирование умений и навыков построения сечений. Развивающая цель: формирование и развитие у учащихся пространственного представления. ...
Пчелы и геометрия

Пчелы и геометрия

Внеклассное мероприятие «пчелы и геометрия». В природе все продумано и совершенно. Индийская пчела Украинская пчела. Австралийская пчела. Пчела - ...
Векторы геометрия

Векторы геометрия

Вектора. Действия с векторами. а b. Сумма векторов. Вырази вектор АС АN AM CB CM. Произведение векторов. Выразите вектор ОМ. М – точка пересечения ...
Вероятность и геометрия

Вероятность и геометрия

Классическая вероятностная схема. Для нахождения вероятности случайного события A при проведении некоторого числа опытов следует: Найти число N всех ...
Алгебра и геометрия

Алгебра и геометрия

Комплексные числа. ׳. Содержание. § 1. Основные понятия § 2. Геометрическое изображение комплексных чисел § 3. Формы записи комплексных чисел § 4. ...
В моде – геометрия

В моде – геометрия

Мода 60 – ых, и поп - арт. Наряды с геометрическими формами смотрятся очень остро. В моде 1920-х годов большое влияние оказало авангардное искусство-от ...
Алгебра и геометрия

Алгебра и геометрия

История. Женщина обучает детей геометрии. Иллюстрация из парижской рукописи Евклидовых «Начал», начало XIV века. Средние века немного дали геометрии, ...
«Скалярное произведение векторов» геометрия

«Скалярное произведение векторов» геометрия

Таблица значений для углов, равных 300, 450, 600. Заполните таблицу. Формулы приведения. sin( )= cos( )= -. Проверка д.з. № 1039 Диагонали квадрата ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
Перпендикулярность в пространстве геометрия

Перпендикулярность в пространстве геометрия

Цель:. Познакомиться с перпендикулярностью в пространстве. Проанализировать различные источники по данной теме. Выделить основные подходы к рассмотрению ...

Конспекты

Циклоидальные кривые

Циклоидальные кривые

. . . . . Циклоидальные кривые. . Оглавление. . Циклоидальные кривые 1. Оглавление 1. Введение 3. 1.Кривые. 4. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 апреля 2019
Категория:Математика
Содержит:33 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации