- Объем фигур в пространстве

Презентация "Объем фигур в пространстве" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28

Презентацию на тему "Объем фигур в пространстве" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 28 слайд(ов).

Слайды презентации

ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ. Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу объема принимается куб, ребро которого равно единице измерения длины. Для объемов пространственных фигур справедливы свойства, аналогичные свойст
Слайд 1

ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ

Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу объема принимается куб, ребро которого равно единице измерения длины.

Для объемов пространственных фигур справедливы свойства, аналогичные свойствам площадей плоских фигур, а именно: 1. Объем фигуры в пространстве является неотрицательным числом. 2. Равные фигуры имеют равные объемы. 3. Если фигура Ф составлена из двух неперекрывающихся фигур Ф1 и Ф2, то объем фигуры Ф равен сумме объемов фигур Ф1 и Ф2, т.е. V(Ф)=V(Ф1)+V(Ф2). Две фигуры, имеющие равные объемы, называются равновеликими.

Обобщенный цилиндр. Пусть α и π - две параллельные плоскости, l - пересекающая эти плоскости прямая; F – фигура на одной из этих плоскостей, F’ – ее параллельная проекция на другую плоскость в направлении прямой l. Отрезки, соединяющие точки фигуры F с их проекциями, образуют фигуру в пространстве,
Слайд 2

Обобщенный цилиндр

Пусть α и π - две параллельные плоскости, l - пересекающая эти плоскости прямая; F – фигура на одной из этих плоскостей, F’ – ее параллельная проекция на другую плоскость в направлении прямой l. Отрезки, соединяющие точки фигуры F с их проекциями, образуют фигуру в пространстве, которую мы будем называть обобщенным цилиндром. Фигуры F и F’ называются основаниями обобщенного цилиндра. Расстояние между плоскостями оснований называют высотой обобщенного цилиндра.

В случае, если в определении обобщенного цилиндра вместо параллельной проекции берется ортогональная, т. е. прямая l перпендикулярна плоскостям α и π, то обобщенный цилиндр называется прямым. В противном случае цилиндр называется наклонным.

Частным случаем обобщенного цилиндра являются цилиндр и призма.

Объем обобщенного цилиндра. Теорема. Объем прямого обобщенного цилиндра равен произведению площади его основания на высоту. Следствие 1. Объем прямоугольного параллелепипеда равен произведению трех его измерений, т. е. имеет место формула. Следствие 2. Объем прямой призмы равен произведению площади
Слайд 3

Объем обобщенного цилиндра

Теорема. Объем прямого обобщенного цилиндра равен произведению площади его основания на высоту.

Следствие 1. Объем прямоугольного параллелепипеда равен произведению трех его измерений, т. е. имеет место формула

Следствие 2. Объем прямой призмы равен произведению площади ее основания на высоту, т. е. имеет место формула

где a, b, c – ребра параллелепипеда.

где S – площадь основания, h – высота призмы.

Следствие 3. Объем прямого кругового цилиндра, высота которого равна h и радиус основания R, вычисляется по формуле

Упражнение 1. Может ли объем фигуры в пространстве быть: а) отрицательным числом; б) нулем? Ответ: а) Нет; б) да.
Слайд 4

Упражнение 1

Может ли объем фигуры в пространстве быть: а) отрицательным числом; б) нулем?

Ответ: а) Нет; б) да.

Упражнение 2. Диагональ куба равна 2 см. Найдите его объем. Ответ: см3.
Слайд 5

Упражнение 2

Диагональ куба равна 2 см. Найдите его объем.

Ответ: см3.

Упражнение 3. Чему равен объем пространственного креста, если ребра образующих его кубов равны единице? Ответ: Семь куб. ед.
Слайд 6

Упражнение 3

Чему равен объем пространственного креста, если ребра образующих его кубов равны единице?

Ответ: Семь куб. ед.

Упражнение 4. Чему равен объем фигуры, изображенной на рисунке? Ответ: Три куб. ед.
Слайд 7

Упражнение 4

Чему равен объем фигуры, изображенной на рисунке?

Ответ: Три куб. ед.

Упражнение 5. Дан куб с ребром 3 см. В каждой грани проделано сквозное квадратное отверстие со стороной 1 см. Найдите объем оставшейся части. Ответ: 20 см3.
Слайд 8

Упражнение 5

Дан куб с ребром 3 см. В каждой грани проделано сквозное квадратное отверстие со стороной 1 см. Найдите объем оставшейся части.

Ответ: 20 см3.

Упражнение 6. Как относятся объемы двух кубов: данного и его модели, уменьшенной в масштабе: а) 1 : 2; б) 1 : 3; в) 1 : n? Ответ: а) 1 : 8; б) 1 : 27; в) 1 : n3.
Слайд 9

Упражнение 6

Как относятся объемы двух кубов: данного и его модели, уменьшенной в масштабе: а) 1 : 2; б) 1 : 3; в) 1 : n?

Ответ: а) 1 : 8; б) 1 : 27; в) 1 : n3.

Упражнение 7. Если каждое ребро куба увеличить на 2 см, то его объем увеличится на 98 см3. Определите ребро куба. Ответ: 3 см.
Слайд 10

Упражнение 7

Если каждое ребро куба увеличить на 2 см, то его объем увеличится на 98 см3. Определите ребро куба.

Ответ: 3 см.

Упражнение 8. В прямом параллелепипеде стороны основания равны 8 см и 5 см и образуют угол в 60°. Меньшая диагональ параллелепипеда составляет с плоскостью основания угол в 30°. Определите объем этого параллелепипеда. Ответ: 140 см3.
Слайд 11

Упражнение 8

В прямом параллелепипеде стороны основания равны 8 см и 5 см и образуют угол в 60°. Меньшая диагональ параллелепипеда составляет с плоскостью основания угол в 30°. Определите объем этого параллелепипеда.

Ответ: 140 см3.

Упражнение 9. Как изменится объем прямого параллелепипеда, если: а) одно из его измерений увеличить в 2 раза, в 3 раза, в n раз; б) если два его измерения увеличить, причем каждое из них в 2, 3, n раз; в) если все три его измерения увеличить в 2, 3, n раз? Ответ: а) Увеличится в 2 раза, в 3 раза, в
Слайд 12

Упражнение 9

Как изменится объем прямого параллелепипеда, если: а) одно из его измерений увеличить в 2 раза, в 3 раза, в n раз; б) если два его измерения увеличить, причем каждое из них в 2, 3, n раз; в) если все три его измерения увеличить в 2, 3, n раз?

Ответ: а) Увеличится в 2 раза, в 3 раза, в n раз;

б) увеличится в 4 раза, в 9 раза, в n2 раз;

в) увеличится в 8 раз, в 27 раз, в n3 раз.

Упражнение 10. Осевое сечение прямого кругового цилиндра - квадрат со стороной 1 см. Найдите объем цилиндра.
Слайд 13

Упражнение 10

Осевое сечение прямого кругового цилиндра - квадрат со стороной 1 см. Найдите объем цилиндра.

Упражнение 11. Одна кружка вдвое выше другой, зато другая в полтора раза шире. Какая кружка вместительнее? Ответ: Та, которая шире.
Слайд 14

Упражнение 11

Одна кружка вдвое выше другой, зато другая в полтора раза шире. Какая кружка вместительнее?

Ответ: Та, которая шире.

Упражнение 12. Диагональ осевого сечения цилиндра равна d и наклонена к плоскости основания под углом φ. Найдите объем цилиндра. Ответ:
Слайд 15

Упражнение 12

Диагональ осевого сечения цилиндра равна d и наклонена к плоскости основания под углом φ. Найдите объем цилиндра.

Ответ:

Упражнение 13. Найдите объем фигуры, которая получается при вращении квадрата вокруг его стороны, равной a. Ответ: a3.
Слайд 16

Упражнение 13

Найдите объем фигуры, которая получается при вращении квадрата вокруг его стороны, равной a.

Ответ: a3.

Упражнение 14. Два цилиндра образованы вращением одного и того же прямоугольника около каждой из неравных его сторон a и b. Как относятся объемы цилиндров? Ответ: a : b.
Слайд 17

Упражнение 14

Два цилиндра образованы вращением одного и того же прямоугольника около каждой из неравных его сторон a и b. Как относятся объемы цилиндров?

Ответ: a : b.

Упражнение 15. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 см и 4 см, высота призмы равна 10 см. Найдите объем данной призмы. Ответ: 60 см3.
Слайд 18

Упражнение 15

Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 см и 4 см, высота призмы равна 10 см. Найдите объем данной призмы.

Ответ: 60 см3.

Упражнение 16. Найдите объем правильной четырехугольной призмы, сторона основания которой 5 см и высота 8 см. Ответ: 200 см3.
Слайд 19

Упражнение 16

Найдите объем правильной четырехугольной призмы, сторона основания которой 5 см и высота 8 см.

Ответ: 200 см3.

Упражнение 17. Найдите высоту правильной четырехугольной призмы, если сторона ее основания 20 см и объем 4800 см3. Ответ: 12 см.
Слайд 20

Упражнение 17

Найдите высоту правильной четырехугольной призмы, если сторона ее основания 20 см и объем 4800 см3.

Ответ: 12 см.

Упражнение 18. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. В каком отношении эта плоскость делит объем призмы? Ответ: 1 : 3.
Слайд 21

Упражнение 18

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. В каком отношении эта плоскость делит объем призмы?

Ответ: 1 : 3.

Упражнение 19. Основание прямой призмы - ромб, площадь которого равна 1 м2. Площади диагональных сечений равны 3 м2 и 6 м2. Найдите объем призмы. Ответ: 3 м3.
Слайд 22

Упражнение 19

Основание прямой призмы - ромб, площадь которого равна 1 м2. Площади диагональных сечений равны 3 м2 и 6 м2. Найдите объем призмы.

Ответ: 3 м3.

Упражнение 20. Найдите формулу объема правильной n-угольной призмы, высота которой равна h, а сторона основания равна a.
Слайд 23

Упражнение 20

Найдите формулу объема правильной n-угольной призмы, высота которой равна h, а сторона основания равна a.

Упражнение 21. Объем правильной шестиугольной призмы равен V. Определите объем призмы, вершинами оснований которой являются середины сторон оснований данной призмы.
Слайд 24

Упражнение 21

Объем правильной шестиугольной призмы равен V. Определите объем призмы, вершинами оснований которой являются середины сторон оснований данной призмы.

Упражнение 22. Во сколько раз объем цилиндра, описанного около правильной четырехугольной призмы, больше объема цилиндра, вписанного в эту же призму? Ответ: В 2 раза.
Слайд 25

Упражнение 22

Во сколько раз объем цилиндра, описанного около правильной четырехугольной призмы, больше объема цилиндра, вписанного в эту же призму?

Ответ: В 2 раза.

Упражнение 23. В цилиндрический сосуд, диаметр которого равен 9 см, опущена деталь. При этом уровень жидкости в сосуде поднялся на 12 см. Чему равен объем детали? Ответ: 243 см3.
Слайд 26

Упражнение 23

В цилиндрический сосуд, диаметр которого равен 9 см, опущена деталь. При этом уровень жидкости в сосуде поднялся на 12 см. Чему равен объем детали?

Ответ: 243 см3.

Упражнение 24. Через точку окружности основания прямого кругового цилиндра проведена плоскость под углом φ к этому основанию. Радиус основания цилиндра равен R. Найдите объем части цилиндра, отсекаемой плоскостью. Ответ: R3tg.
Слайд 27

Упражнение 24

Через точку окружности основания прямого кругового цилиндра проведена плоскость под углом φ к этому основанию. Радиус основания цилиндра равен R. Найдите объем части цилиндра, отсекаемой плоскостью.

Ответ: R3tg.

Упражнение 25. Найдите объем правильной четырехугольной пирамиды, в основании которой квадрат со стороной 1, а высота равна 0,5.
Слайд 28

Упражнение 25

Найдите объем правильной четырехугольной пирамиды, в основании которой квадрат со стороной 1, а высота равна 0,5.

Список похожих презентаций

Алгебраические поверхности в пространстве

Алгебраические поверхности в пространстве

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Алгебраические поверхности второго порядка в пространстве» Задачи: Рассмотреть понятие ...
"Векторы в пространстве"

"Векторы в пространстве"

Векторы в пространстве. Тема урока:. ТАБЛИЦА «Векторы в пространстве». ФИЗИКА. Направление движения тела. ЭЛЕКТРОТЕХНИКА. Движение заряженных частиц ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

Самостоятельная работа. Вариант I Вариант II. Выполнить действия в двоичной системе счисления:. 1) 101012 + 1012 2) 101012 + 10102 3) 1000012 – 1102 ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
Алгебра в 9 классе.

Алгебра в 9 классе.

Функция их свойства и графики. Сформулируйте определение чётной функции, определение нечётной функции. Не является ни чётной, ни нечётной. чётная ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...

Конспекты

Виды треугольников. Плоскостное моделирование и конструирование. Аппликация из геометрических фигур — треугольников

Виды треугольников. Плоскостное моделирование и конструирование. Аппликация из геометрических фигур — треугольников

Тема. : «Виды треугольников. Плоскостное моделирование и конструирование. Аппликация из геометрических фигур — треугольников».  . Цели занятия. ...
Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:4 апреля 2019
Категория:Математика
Содержит:28 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации