Презентация "Функции" (9 класс) по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36

Презентацию на тему "Функции" (9 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 36 слайд(ов).

Слайды презентации

Научно-исследовательская работа по теме «Класс элементарных функций и их графики». Иовлева Максима Николаевича, учащегося 9 класса РМОУ Радужская ООШ. Руководитель Крючкова Татьяна Борисовна учитель, математики.
Слайд 1

Научно-исследовательская работа по теме «Класс элементарных функций и их графики»

Иовлева Максима Николаевича, учащегося 9 класса РМОУ Радужская ООШ. Руководитель Крючкова Татьяна Борисовна учитель, математики.

Оглавление: Оглавление 1. Введение. 2.Из истории развития функции 3. Способы задания функции 4. Класс элементарных функций. 4.1.Основные элементарные функции. 4.2. Построение графиков 5. Преобразование исходного графика функции y=f(x). 6. Заключение 7.Список литературы
Слайд 2

Оглавление:

Оглавление 1. Введение. 2.Из истории развития функции 3. Способы задания функции 4. Класс элементарных функций. 4.1.Основные элементарные функции. 4.2. Построение графиков 5. Преобразование исходного графика функции y=f(x). 6. Заключение 7.Список литературы

Введение. Математика, давно став языком науки и техники, в настоящее время все шире проникает в повседневную жизнь и обиходный язык, все более внедряется в традиционно далекие от нее области. Как образно заметил великий Галилео Галилей (1564 – 1642 гг.), книга природы написана на математическом язык
Слайд 3

Введение.

Математика, давно став языком науки и техники, в настоящее время все шире проникает в повседневную жизнь и обиходный язык, все более внедряется в традиционно далекие от нее области. Как образно заметил великий Галилео Галилей (1564 – 1642 гг.), книга природы написана на математическом языке, и ее буквы – математические знаки и геометрические фигуры, без них невозможно понять ее слова, без них тщетно блуждание в бесконечном лабиринте. И именно функция является тем средством математического языка, которое позволяет описывать процессы движения, изменения, присущие природе. Изучая квадратичную функцию в 9 классе, мы выполняли преобразования графика этой функции. В результате этих преобразований построение графика выполнялось легко и просто. И я задумался: «А нельзя ли выполнять аналогичные преобразования с графиками других функций, например линейной функции, обратной пропорциональности, степенной функции?». Поэтому я выбрал тему своей работы «Класс элементарных функций и их графики», поставив перед собой цель: понять и изучить способы образования элементарных функций и преобразования их графиков.

Из истории развития функции. Впервые функция вошла в математику под именем «переменная величина» в знаменитом труде французского математика и философа Р. Декарта «Геометрия», и её появление послужило, по словам Ф. Энгельса, поворотным пунктом в математике, благодаря чему в неё вошли движение, диалек
Слайд 4

Из истории развития функции.

Впервые функция вошла в математику под именем «переменная величина» в знаменитом труде французского математика и философа Р. Декарта «Геометрия», и её появление послужило, по словам Ф. Энгельса, поворотным пунктом в математике, благодаря чему в неё вошли движение, диалектика. Без переменных величин И.Ньютон не смог бы выразить законы динамики, описывающие процессы механического движение тел – небесных и вполне земных, а современные ученые не могли бы рассчитывать траектории движения космических кораблей и решать бесконечное множество технических проблем нашей эпохи.

С развитием науки понятие функции уточнялось и обобщалось. Сейчас оно стало настолько общим, что совпадает с понятием соответствия. Таким образом, функцией в общем понимании называется любой закон (правило), по которому каждому объекту из некоторого класса, области определения функции, поставлен в с
Слайд 5

С развитием науки понятие функции уточнялось и обобщалось. Сейчас оно стало настолько общим, что совпадает с понятием соответствия. Таким образом, функцией в общем понимании называется любой закон (правило), по которому каждому объекту из некоторого класса, области определения функции, поставлен в соответствие некоторый объект из другого (или того же) класса – области возможных значений функции. Но мы не рассматриваем понятие функции в столь общем понимании, а считаем, что как независимая, так и зависимая переменные – это величины. Таким образом функцией называется зависимость, связывающая с каждым значением одной переменной величины (аргумента) из некоторой области ее изменения определенное значение другой величины (функции). Если аргумент обозначить через х, значение функции - через у, а саму зависимость – функцию – символом f, то связь между значениями функции и аргументом так: y=f(x).

Способы задания функций. Существуют три основных способа выражения зависимостей между величинами: табличный, графический и аналитический («формульный»). Табличный способ важен потому, что является основным при обнаружении реальных зависимостей и может оказаться к томуже единственным средством их зад
Слайд 6

Способы задания функций.

Существуют три основных способа выражения зависимостей между величинами: табличный, графический и аналитический («формульный»). Табличный способ важен потому, что является основным при обнаружении реальных зависимостей и может оказаться к томуже единственным средством их задания (формулу не всегда удается подобрать, а порой в ней и нет необходимости).К табличному заданию функции часто переходят при выполнении практических расчетов, с ней связанных: например, применение таблиц квадратных корней удобно при проведении расчетов, в которых участвуют такие корни. С математической точке зрения, табличное задание непрерывных зависимостей всегда неполно и дает лишь информацию о значениях функции в отдельных точках.

Способы задания функций. Графический способ представления зависимостей также является одним из средств их фиксации при изучении реальных явлений. Это позволяет делать различные «самопишущие» приборы, такие, как сейсмограф, электрокардиограф, осциллограф и т.п., изображающие информацию об изменении и
Слайд 7

Способы задания функций

Графический способ представления зависимостей также является одним из средств их фиксации при изучении реальных явлений. Это позволяет делать различные «самопишущие» приборы, такие, как сейсмограф, электрокардиограф, осциллограф и т.п., изображающие информацию об изменении измеряемых величин в виде графиков. Но если есть график, то значит, определена и соответствующая ему функция. В таких случаях говорят о графическом задании функции. Однако графический способ задания функции неудобен для расчетов; к тому же, подобно табличному, он является приближенным и неполным. Аналитическое (формульное) задание функции отличается своей компактностью, легко запоминается и содержит в себе полную информацию о зависимости. Функцию можно задать с помощью формулы, например: y=2x+5, S=at2/2, S=vt. Эти формулы можно вывести с помощью геометрических или физических рассуждений. Порой формулы получаются в результате обработки эксперимента, такие формулы называются эмпирическими.

Класс элементарных функции. К элементарным функциям относятся практически все функции, встречающиеся в школьном учебнике. Прежде всего, имеется достаточно представительный набор широко известных и хорошо изученных функций, которые называются основными элементарными функциями. Это функции: y=C, назыв
Слайд 8

Класс элементарных функции

К элементарным функциям относятся практически все функции, встречающиеся в школьном учебнике. Прежде всего, имеется достаточно представительный набор широко известных и хорошо изученных функций, которые называются основными элементарными функциями. Это функции: y=C, называемая константой, y= xа - степенная ( при а = 1 получается функция y=x, называемая тождественной). Графики этих функций прилагаются. (приложение 1-7) Имея в распоряжении основные элементарные функции, можно ввести ряд операций, позволяющих комбинировать их между собой как детали для получения более сложных и разнообразных конструкций. Допустимые арифметические действия над функциями. [+] – сложение, [-] – вычитание, [*] – умножение, [:] – деление. Все те функции, которые можно получить из основных элементов с помощью арифметических операций называются элементарными функциями составляют класс элементарных функций.

Приложение 1
Слайд 9

Приложение 1

Приложение 2
Слайд 10

Приложение 2

Приложение 3 У=х2
Слайд 11

Приложение 3 У=х2

У=х3 Приложение4
Слайд 12

У=х3 Приложение4

Степенная функция У=х-1. Приложение 5
Слайд 13

Степенная функция У=х-1

Приложение 5

Приложение6. Степенная функция у=х0,5
Слайд 14

Приложение6

Степенная функция у=х0,5

Образование класса элементарных функций. Имея определенный набор базисных функций f1 , f2 ,f3 ,...fk и допустимых операций F1, F2, ... Fs над ними (их разрешается применять любое число раз), мы можем получать другие функции, подобно тому, как из деталей конструктора с помощью определенных правил их
Слайд 15

Образование класса элементарных функций

Имея определенный набор базисных функций f1 , f2 ,f3 ,...fk и допустимых операций F1, F2, ... Fs над ними (их разрешается применять любое число раз), мы можем получать другие функции, подобно тому, как из деталей конструктора с помощью определенных правил их соединения можно получить разные модели. Класс всех получаемых таким образом функций обозначается так: . В частности, если принять за базисные все основные элементарные функции и допустить лишь арифметические операции, то получим класс элементарных функций. Беря в качестве базисных часть основных элементарных функций и допуская, возможно, лишь часть указанных операций, получим некоторые подклассы класса элементарных функций, некоторые семейства функций, порождаемые данным базисом и данными операциями. Вот несколько примеров таких семейств функций, где под (а) понимается операция умножения на любую константу: - семейство целых положительных степеней у=х, где n € N; - семейство линейных функций у= ах+в; - семейство многочленов у= ахn +...+an-1x +an, где n € N.

Построение графиков. Чтобы построить график функции у= х +1, надо к графику функции у=х прибавить график функции у=1. В результате график функции у = х сдвинется по оси Оу на 1 единицу вверх (приложение 7).
Слайд 16

Построение графиков

Чтобы построить график функции у= х +1, надо к графику функции у=х прибавить график функции у=1. В результате график функции у = х сдвинется по оси Оу на 1 единицу вверх (приложение 7).

Построение графиков графика. Для построения графика функции у=х2 достаточно выполнить действие умножение с графиками двух тождественных функций у=х (приложение 8).
Слайд 18

Построение графиков графика.

Для построения графика функции у=х2 достаточно выполнить действие умножение с графиками двух тождественных функций у=х (приложение 8).

Функции 9 класс Слайд: 18
Слайд 19
Для построения графика функции у= 3х2 надо график функции у= х2 умножить на 3. В результате график функции у= х2 растянется в 3 раза вдоль оси ординат, а если у=0,3 х2 , то произойдет сжатие графика в 0,3 раза вдоль оси Оу. (приложение 8, 9).
Слайд 20

Для построения графика функции у= 3х2 надо график функции у= х2 умножить на 3. В результате график функции у= х2 растянется в 3 раза вдоль оси ординат, а если у=0,3 х2 , то произойдет сжатие графика в 0,3 раза вдоль оси Оу. (приложение 8, 9).

У=х2 У=3Х2
Слайд 21

У=х2 У=3Х2

У=Х2 У=0,3Х2 10
Слайд 22

У=Х2 У=0,3Х2 10

График функции у=3(х -4)2 можно получить, выполнив следующие действия: - сложить графики тождественной функции у=х и константы у=-4, получим график функции у=х-4; - перемножить графики функций у=х-4 и у=х-4, получим график функции у= (х -4)2 ; - умножить у= (х -4)2 на 3, получим график функции у=3(х
Слайд 23

График функции у=3(х -4)2 можно получить, выполнив следующие действия: - сложить графики тождественной функции у=х и константы у=-4, получим график функции у=х-4; - перемножить графики функций у=х-4 и у=х-4, получим график функции у= (х -4)2 ; - умножить у= (х -4)2 на 3, получим график функции у=3(х -4)2. Или просто график функции у=3х2 сдвинуть по оси Ох на 4 единичных отрезка (Приложение10).

У=3Х2 У=3(Х-4)2 Приложение11
Слайд 24

У=3Х2 У=3(Х-4)2 Приложение11

Преобразования исходного графика функции y= f(x). Из вышесказанного можно сделать следующий вывод, что выполняя различные действия с графиками элементарных функций, мы выполняем преобразования этих графиков, а именно: параллельный перенос, симметрию относительно прямой Ох и прямой Оу.
Слайд 25

Преобразования исходного графика функции y= f(x).

Из вышесказанного можно сделать следующий вывод, что выполняя различные действия с графиками элементарных функций, мы выполняем преобразования этих графиков, а именно: параллельный перенос, симметрию относительно прямой Ох и прямой Оу.

Параллельный перенос. а)y= f(x)+а – сдвиг по оси Оу на а единиц вверх, если a>0, или вниз, если a0, или вправо, если a
Слайд 26

Параллельный перенос. а)y= f(x)+а – сдвиг по оси Оу на а единиц вверх, если a>0, или вниз, если a0, или вправо, если a

Приложение 12
Слайд 27

Приложение 12

Симметрия относительно оси Ох. а) у=- f(x) – симметричное отражение графика относительно оси Ох; б)у =│f(x)│- замена частей графика, лежащих ниже Ох, отражением относительно этой оси части, лежащей ниже оси Ох, с сохранением остальных частей графика . (Приложение 13 и 14)
Слайд 29

Симметрия относительно оси Ох. а) у=- f(x) – симметричное отражение графика относительно оси Ох; б)у =│f(x)│- замена частей графика, лежащих ниже Ох, отражением относительно этой оси части, лежащей ниже оси Ох, с сохранением остальных частей графика . (Приложение 13 и 14)

Приложение 14
Слайд 30

Приложение 14

Приложение 15
Слайд 31

Приложение 15

Симметрия относительно оси Оу. а) у = f(-x) – симметричное отражение графика относительно оси Оу; б) ) у= f(│x│) – замена части графика, лежащей левее Оу, отражением относительно этой оси части, лежащей правее оси Оу с сохранением правой части графика. (Приложение 15 и 16)
Слайд 32

Симметрия относительно оси Оу. а) у = f(-x) – симметричное отражение графика относительно оси Оу; б) ) у= f(│x│) – замена части графика, лежащей левее Оу, отражением относительно этой оси части, лежащей правее оси Оу с сохранением правой части графика. (Приложение 15 и 16)

Приложение 16
Слайд 33

Приложение 16

Приложение 17
Слайд 34

Приложение 17

Заключение. Заканчивая свою работу я увидел, что строить графики элементарных функций интересно и просто. А график является портретом функции, поэтому функцию можно назвать поистине красавицей. Математика – это набор инструментов, который необходим в познании окружающего мира. И этим инструментом не
Слайд 35

Заключение.

Заканчивая свою работу я увидел, что строить графики элементарных функций интересно и просто. А график является портретом функции, поэтому функцию можно назвать поистине красавицей. Математика – это набор инструментов, который необходим в познании окружающего мира. И этим инструментом необходимо владеть в совершенстве, чтобы познавать, развивать и изменять нашу жизнь.

Список литературы. Н.П. Токарчук «Красавицы функции и их графики». В.К.Егоров, Б.А.Радунский, Д.А.Тальский «Методика построения графиков функций». Ю.Н.Макрычев, Н.Г.Миндюк, К.И.Нешков, С.Б,Севорова «Учебник алгебры».
Слайд 36

Список литературы.

Н.П. Токарчук «Красавицы функции и их графики». В.К.Егоров, Б.А.Радунский, Д.А.Тальский «Методика построения графиков функций». Ю.Н.Макрычев, Н.Г.Миндюк, К.И.Нешков, С.Б,Севорова «Учебник алгебры».

Список похожих презентаций

Функции и их графики

Функции и их графики

Содержание. Построение графиков функций y=af(x). Построение графиков функций y=af(x)+n. Построение графиков функций y=af(x-m). Построение графиков ...
Функции и их графики

Функции и их графики

Линейная функция y=kx+b. Прямая пропорциональность y=kx. Обратная пропорциональность y =. Квадратичная функция y=ax²+bx+c, a 0. 1.Выберите уравнение, ...
Функции, их свойства и графики

Функции, их свойства и графики

Определение функции. Среди перечисленных ниже зависимостей укажите только те, которые представляют собой функцию: у = х2 + 1, y = 8, x = - 1, y = ...
Функции

Функции

Тема урока: Функции. Функции заданы формулами. Какие это функций и что является графиком каждой функции? у = -4х+8 У= 5,4х У= -х²-4х+2 У= 7/х У= 6 ...
Функции нескольких переменных

Функции нескольких переменных

Литература. Основная литература: Л. Д. Кудрявцев. Курс математического анализа, т. 1, 2 Г. Н. Берман. Сборник задач по курсу математического анализа. ...
Функции тангенса и котангенса

Функции тангенса и котангенса

y = tgx. Функция y = tgx определена при , является нечетной и периодической с периодом П. Покажем, что на промежутке функция y = tgx возратает. Покажем, ...
Функции в образах

Функции в образах

НАГЛЯДНАЯ ДЕМОНСТРАЦИЯ ФУНКЦИОНАЛЬНЫХ ЗАВИСИ- МОСТЕЙ, С ПОМОЩЬЮ КОТОРЫХ МОЖНО ОПИСАТЬ РЕАЛЬНЫЕ СОБЫТИЯ В ЖИЗНИ, ИСТОРИИ; РАЗЛИЧНЫЕ ПРОЦЕССЫ В ХИМИИ, ...
Функции и их свойства

Функции и их свойства

У=f (X). Определение функции. Функцией называется зависимость между двумя переменными (У и Х) в которой каждому значению независимой переменной (Х) ...
Функции в алгебре

Функции в алгебре

Определение функции. Определение аргумента и значения функции. Функция - это математическая зависимость значений переменной У от заданных значений ...
Функции в жизни человека

Функции в жизни человека

Работу выполнила: Лапшина Олеся Валерьевна, Ученица 11 класса, МОУ «Иогачская средняя общеобразовательная школа», Республика Алтай. Руководитель: ...
Функции алгебры логики

Функции алгебры логики

План. Функции алгебры логики Элементы комбинаторики Элементы теории графов Три контрольные работы (в редакторе ТеХ, http://miktex.org/2.8/setup). ...
Функции

Функции

Определение функции. Функция – это зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное ...
Функции

Функции

Цели урока:. Обучающие: повторить знания по теме « Функция»; Развивающие: развивать интерес к предмету, показать практическое применение темы; Воспитывающие: ...
Функции и их графики

Функции и их графики

Экстремумы функции. Наибольшее и наименьшее значение функции. Понятие функции. Общие свойства функции. Понятие обратной функции. Непрерывность. Элементарные ...
Функции и графики

Функции и графики

Графики в жизни Рис. 1 Рис.2. Линейная функция и прямая пропорциональность. Обратная пропорциональность и степенная функция. Еще функции. Преобразования ...
Функции и их свойства

Функции и их свойства

Функции и их свойства. у = f (x) у x 0. Учитель математики Потеряйкина О.Н. МБОУ СОШ №68. г. Хабаровск. Из истории возникновения функции. Понятие ...
Функции и графики

Функции и графики

Найдите соответствие? 1) 6) 5) 4) 3) а) y = kx + b б) в) y = – | x | г) y = x2 д) е). Функция y = f(x). № 1 Дана функция y = f(x), где f(x) = 2x2. ...
Функции и их свойства, функциональные уравнения

Функции и их свойства, функциональные уравнения

Функции f(x) и q(x) взаимно обратные. 1. Найдите правильное соответствие. 2. Укажите нечетные функции. 3. Укажите функции, у которых графиком является ...
Функции и графики

Функции и графики

Функция, область определения и область значений функции. Х У f. f- функция Каждому х соответствует единственный у. f- не функция -Не каждому х - не ...
Функции помогают уравнениям

Функции помогают уравнениям

Показательная функция. По закону показательной функции размножалось бы все живое на Земле, если бы…. Найти значение выражения если является решением ...

Конспекты

Функции у=ах2 и у=ах3 и их графики

Функции у=ах2 и у=ах3 и их графики

Учитель: Г.М. Уркумбаева. Урок2 алгебры в 7-м классе. по теме "Функции у=ах2. и у=ах3. и их графики". Тип урока:.  усвоение новых знаний. ...
Функции и их графики. Подготовка к ГИА

Функции и их графики. Подготовка к ГИА

. Государственное бюджетное общеобразовательное учреждение. средняя общеобразовательная школа №625. с углублённым изучением математики Невского ...
Функции у = у = , их свойства и графики. Тестирование

Функции у = у = , их свойства и графики. Тестирование

Тема урока: «. Функции у =. у =. , их свойства и графики. Тестирование. ». ЦЕЛИ И ЗАДАЧИ УРОКА:. 1. Обобщить материал по теме, проверить умения ...
Функции и их графики

Функции и их графики

В настоящее время все больше внимания уделяется повышению эффективности и качества учебного процесса. Уменьшение количества учебных часов, отводимых ...
Функции и их графики

Функции и их графики

МОУ – СОШ №4. Урок алгебры в 9-а классе. « Функции и их графики». Авторский урок. подготовила и провела. учитель математики I. категории. ...
Функции и их графики

Функции и их графики

Муниципальное автономное образовательное учреждение,. средняя общеобразовательная школа №58,. п. Мулино, Володарский район, Нижегородская область. ...
Функции и графики. Квадратичная функция, ее свойства и график

Функции и графики. Квадратичная функция, ее свойства и график

Климова Елена Анатольевна. . МБОУ «СОШ № 12» Анжеро-Судженский городской округ Кемеровской области. . Учитель математики. . . ...
Функции y=ax2, y=ax3

Функции y=ax2, y=ax3

Учитель математики КГУ ОШ №9 Петухова Ольга Владимировна. . Урок №9. Дата ________. . Тема урока: «Функции. y. =. ax. 2. ,. y. =. ax. 3. ». ...
Функции

Функции

Открытый урок. Учитель:. Бобков Анна Михайловна. Класс:. 8Г. Предмет:. Алгебра. Учебник:. . «Алгебра -8», А.Г. Мордкович, Т.Н. Мишутина, ...
Функции

Функции

Конспект урока по теме «Функции». 8 класс. Цель: Повторить виды изученных функций и их свойства. Закрепить умения читать график функции. Урок проводится ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:9 января 2019
Категория:Математика
Классы:
Содержит:36 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации