- Количественный анализ

Презентация "Количественный анализ" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20

Презентацию на тему "Количественный анализ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 20 слайд(ов).

Слайды презентации

Количественный анализ. Химические методы анализа Гравиметрический анализ Титриметрический анализ Инструментальные методы анализа Оптические Электрохимические Хроматографические
Слайд 1

Количественный анализ

Химические методы анализа Гравиметрический анализ Титриметрический анализ Инструментальные методы анализа Оптические Электрохимические Хроматографические

Гравиметрический анализ
Слайд 2

Гравиметрический анализ

Гравиметрией называют метод количественного анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава. Предел обнаружения - 0,10%; правильность - 0,2 отн. %. Наиболее распространен метод осаждения, при котором навеску анализируем
Слайд 3

Гравиметрией называют метод количественного анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава. Предел обнаружения - 0,10%; правильность - 0,2 отн. %. Наиболее распространен метод осаждения, при котором навеску анализируемого вещества растворяют и прибавляют 1,5-кратный избыток реагента-осадителя, соблюдая необходимые условия осаждения. Полученный осадок называют осаждаемой формой. Соединение, в виде которого определяемый компонент осаждается из раствора, называется формой осаждения. Осадок отделяют от раствора (чаще всего фильтрованием), промывают, затем высушивают или прокаливают, получая гравиметрическую (весовую) форму. Соединение, в виде которого производят взвешивание, называют гравиметрической формой

Массовую долю определяемого компонента рассчитывают по формуле. - масса высушенного или прокаленного осадка. F – гравиметрический фактор (фактор пересчета) а – навеска анализируемого вещества
Слайд 4

Массовую долю определяемого компонента рассчитывают по формуле

- масса высушенного или прокаленного осадка

F – гравиметрический фактор (фактор пересчета) а – навеска анализируемого вещества

Требования к реагенту-осадителю Осадитель должен быть летучим веществом Выбираемый осадитель должен обладать селективностью по отношению к определяемому иону. Требования к осаждаемой форме Осаждаемое соединение должно обладать как можно меньшей растворимостью в воде. Желательно, чтобы структура осад
Слайд 5

Требования к реагенту-осадителю Осадитель должен быть летучим веществом Выбираемый осадитель должен обладать селективностью по отношению к определяемому иону. Требования к осаждаемой форме Осаждаемое соединение должно обладать как можно меньшей растворимостью в воде. Желательно, чтобы структура осадка позволяла достаточно быстро проводить его фильтрование. Осаждаемая форма должна при прокаливании нацело превращаться в гравиметрическую форму. Требования к гравиметрической форме Точное соответствие состава определенной химической формуле, иначе невозможно провести вычисление результатов анализа. Достаточная химическая устойчивость. Гравиметрическая форма не должна изменять свою массу на воздухе из-за поглощения паров воды и углекислого газа или вследствие частичного разложения. Для точности определения желательно, чтобы гравиметрическая форма возможно большую молекулярную массу и содержала как можно меньше атомов определяемого элемента в молекуле.

Титриметрический анализ. Титриметрический анализ основан на точном измерении количества реактива, израсходованного на реакцию с определяемым веществом. Кислотно-основное титрование Комплексонометрическое титрование Окислительно-восстановительное титрование Осадительное титрование Титрованный, или ст
Слайд 6

Титриметрический анализ

Титриметрический анализ основан на точном измерении количества реактива, израсходованного на реакцию с определяемым веществом. Кислотно-основное титрование Комплексонометрическое титрование Окислительно-восстановительное титрование Осадительное титрование Титрованный, или стандартный, раствор - раствор, концентрация которого известна с высокой точностью. Титрование - прибавление титрованного раствора к анализируемому для определения точно эквивалентного количества. Титрующий раствор часто называют рабочим раствором или титрантом. Момент титрования, когда количество добавленного титранта химически эквивалентно количеству титруемого вещества, называется точкой эквивалентности.

Реакции, применяемые в титриметрии, должны удовлетворять следующим основным требованиям: 1) реакция должна протекать количественно, т.е. константа равновесия реакции должна быть достаточно велика; 2) реакция должна протекать с большой скоростью; 3) реакция не должна осложняться протеканием побочных
Слайд 7

Реакции, применяемые в титриметрии, должны удовлетворять следующим основным требованиям: 1) реакция должна протекать количественно, т.е. константа равновесия реакции должна быть достаточно велика; 2) реакция должна протекать с большой скоростью; 3) реакция не должна осложняться протеканием побочных реакций; 4) должен существовать способ определения окончания реакции. В титриметрии различают прямое обратное косвенное титрование. Расчет результатов титриметрического анализа основан на принципе эквивалентности, в соответствии с которым вещества реагируют между собой в эквивалентных количествах: Методы титрования характеризуются высокой точностью: погрешность определений составляет 0,1 - 0,3%.

Кислотно-основное титрование. Метод кислотно-основного титрования основан на реакциях взаимодей­ствия между кислотами и основаниями, то есть на реакции нейтрализации: Н + + ОН - ↔ Н2О Наступающий в процессе титрования момент, когда количecтвo стандартного раствора реагента (титранта) становится теор
Слайд 8

Кислотно-основное титрование

Метод кислотно-основного титрования основан на реакциях взаимодей­ствия между кислотами и основаниями, то есть на реакции нейтрализации: Н + + ОН - ↔ Н2О Наступающий в процессе титрования момент, когда количecтвo стандартного раствора реагента (титранта) становится теоретически строго эквивалентным количеству определяемого вещества согласно определенному уравнению химической реакции, называют точкой эквивалентности. Момент, при котором происходит наблюдаемое изменение цвета индикатора, называют конечной точкой титрования (ктт). Кислотно-основные индикаторы - это органические вещества, способные видимо и обратимо изменять свою окраску в растворе при изменении рН среды. Ионная теория индикаторов. В связи с тем, что кислотно-основные индикаторы представляют собой слабые кислоты или слабые основания, любой индикатор диссоциирует в растворе согласно уравнению: HInd ↔ Н++ Ind- бесцветный малиновый Величину рН, до которой титруют раствор с данным индикатором, называют показателем титрования этого индикатора - рТ.

Количественный анализ Слайд: 9
Слайд 9
Комплексонометрическое титрование. Метод анализа, основанный на использовании реакций, сопровождающихся образованием внутрикомплексных (хелатных) соединений с органическими соединениями - комплексонами. Комплексонами называют аминополикарбоновые кислоты и их производные. Комплексонометрия (трилономе
Слайд 10

Комплексонометрическое титрование

Метод анализа, основанный на использовании реакций, сопровождающихся образованием внутрикомплексных (хелатных) соединений с органическими соединениями - комплексонами. Комплексонами называют аминополикарбоновые кислоты и их производные. Комплексонометрия (трилонометрия) - титриметрический метод анализа, основанный на реакциях взаимодействия комплексонов (чаще всего трилона Б), с катионами щелочноземельных и тяжелых металлов, которые приводят к образованию растворимых в воде бесцветных прочных внутрикомплексных соединений.

Количественный анализ Слайд: 11
Слайд 11
Комплексонометрия. H2L2- + Ме2+ ↔ [MeL]2- + 2Н+ H2L2- + Ме3+ ↔ [MeL]- + 2Н+ H2L2- + Ме4+ ↔ [MeL] + 2Н+ При комплексонометрическом титровании используют металлохромные индикаторы (металлоиндикаторы). Металлоиндикаторы - это органические красители (мурексид, эриохром черный Т, эриохром сине-черный Б,
Слайд 12

Комплексонометрия

H2L2- + Ме2+ ↔ [MeL]2- + 2Н+ H2L2- + Ме3+ ↔ [MeL]- + 2Н+ H2L2- + Ме4+ ↔ [MeL] + 2Н+ При комплексонометрическом титровании используют металлохромные индикаторы (металлоиндикаторы). Металлоиндикаторы - это органические красители (мурексид, эриохром черный Т, эриохром сине-черный Б, цинкон и др.), которые образуют с определяемыми ионами растворимые в воде окрашенные комплексные соединения, менее прочные, чем комплекс катиона металла с трилоном Б. H2Ind- + Ме2+↔ [МеInd]- (окраска 1) (окраска 2)

[Ме Ind] - + H2L2 - ↔ [MeL]2- + H2Ind- (окраска 2) (окраска 1)

Условия комплексонометрическоro титрования: 1. Реакции комплексообразования должны протекать быстро, количественно и стехиометрично, чтобы вблизи точки эквивалентности определяемые катионы были практически полностью связаны в комплекс. Константа нестойкости образующихся комплексов должна быть малой
Слайд 13

Условия комплексонометрическоro титрования: 1. Реакции комплексообразования должны протекать быстро, количественно и стехиометрично, чтобы вблизи точки эквивалентности определяемые катионы были практически полностью связаны в комплекс. Константа нестойкости образующихся комплексов должна быть малой величиной. 2. Определяемые ионы должны образовывать с металлоиндиктором менее прочные комплексы, чем их комплексы с трилоном Б. 3. Комплексонометрическое титрование следует проводить при определенном значении рН (рН

Способы комплексонометрического титрования Прямое титрование. К анализируемому раствору прибавляют аммиачный буферный раствор, металлоиндикатор и титруют стандартным раствором трилона Б. Способом прямого титрования определяют катионы Cu2+, Со2+, Pb2+, Ni2+, Zn2+, Fе3+, Ва2+, Сr3+,Ca2+, Mg2+ и т. д.
Слайд 14

Способы комплексонометрического титрования Прямое титрование. К анализируемому раствору прибавляют аммиачный буферный раствор, металлоиндикатор и титруют стандартным раствором трилона Б. Способом прямого титрования определяют катионы Cu2+, Со2+, Pb2+, Ni2+, Zn2+, Fе3+, Ва2+, Сr3+,Ca2+, Mg2+ и т. д. Обратное титрование. К анализируемому раствору прибавляют аммиачный буферный раствор, затем точно отмеренный удвоенный минимальный объем (35,00-40,00 см3) стандартного раствора трилона Б, который вступает в реакцию с определяемыми ионами, а его избыток оттитровывают стандартным раствором магния сульфата или цинка сульфата в присутствии металлоиндикатора. При этом протекают реакции: Ме2++ H2L2- ↔ [Ме]2- + 2Н+ изб. H2L2- + Zn2+ ↔ [ZnL]2- + 2Н+ Способ обратного титрования применяют: 1. когда реакция комплексообразования протекает медленно; 2. нет подходящего индикатора для фиксирования конечной точки тит­рования при прямом способе титрования; 3. индикатор образует с определяемым ионом очень прочный комплекс, который не разрушается комплексоном; 4. для определения катионов в нерастворимых в воде осадках например Са2+ в СаС2О4, Mg2+ в MgNH4PО4, Рb2+ в PbSО4

Заместительное титрование. Метод основан на том, что большинство ионов образуют с трилоном Б более устойчивые комплексные соединения, чем комплекс катионов Mg2+ с трилоном Б [MgL]2- (β = 9,72). После прибавления к анализируемому раствору комплекса [MgL]2- протекает реакция обмена: [MgL]2- + Ме2+ → [
Слайд 15

Заместительное титрование. Метод основан на том, что большинство ионов образуют с трилоном Б более устойчивые комплексные соединения, чем комплекс катионов Mg2+ с трилоном Б [MgL]2- (β = 9,72). После прибавления к анализируемому раствору комплекса [MgL]2- протекает реакция обмена: [MgL]2- + Ме2+ → [MeL]2- + Mg2+ Эта реакция возможна потому, что ионы металла образуют с H2L2- более прочное комплексное соединение [MeL]2- (β > 9,2), и равновесие вышеприведенной реакции смещается вправо. Выделившиеся ионы Mg2+оттитровывают стандартным раствором трилона Б в присутствии металлохромного индикатора: Mg2+ + H2L2- → [MgL]2- + 2Н+ Трилонометрическим методом определяют: а) общую жесткость воды; б) практически все катионы щелочноземельных и тяжелых металлов; в) в фармацевтическом анализе - лекарственные формы, содержащие катионы щелочноземельных металлов.

Окислительно-восстановительное титрование. Методы окислительно-восстановительного титрования основаны на использовании реакций, связанных с переносом электронов, то есть окислительно-восстановительных процессов. Окислителем называется частица (ион, молекула, элемент), которая присоединяет электроны
Слайд 16

Окислительно-восстановительное титрование

Методы окислительно-восстановительного титрования основаны на использовании реакций, связанных с переносом электронов, то есть окислительно-восстановительных процессов. Окислителем называется частица (ион, молекула, элемент), которая присоединяет электроны и переходит при этом из более высокой степени окисления в более низкую, т.е. восстанавливается. Восстановитель – это частица, которая отдает электроны и переходит при этом из более низкой степени окисления в более высокую, т.е. окисляется. 2КМnО4 +10FeSО4 +8Н2SО4↔2МnSО4 + 5Fe2(SО4)3+К2SО4 + 8Н2О Fe2+ - е ↔ Fe3+ МnО4 - + 5е + 8Н + ↔ Мn2+ + 4Н2О Методы окислительно-восстановительного титрования пригодны для определения многих органических соединений, в том числе фармацевтических препаратов, подавляющее большинство которых являются потенциальными восстановителями.

В зависимости от используемого титранта различают перманганатометрию, йодометрию, дихроматометрию, броматометрию. В этих методах в качестве стандартных растворов применяют соответственно KMnO4, I2, K2Cr2O7, KBrO3 и т.д. Из всех типов химических реакций, используемых в количественном анализе, окислит
Слайд 17

В зависимости от используемого титранта различают перманганатометрию, йодометрию, дихроматометрию, броматометрию. В этих методах в качестве стандартных растворов применяют соответственно KMnO4, I2, K2Cr2O7, KBrO3 и т.д. Из всех типов химических реакций, используемых в количественном анализе, окислительно-воостановительные реакции (ОВР) являются наиболее сложными по механизму. Отличительным признаком ОВР является перенос электронов между реагирующими частицами, в результате чего степень окисления реагирующих частиц изменяется. Исходная частица и продукт каждой полуреакции составляют ОВ пару. Например, в реакции окисления железа(II) перманганатом калия участвуют две ОВ пары: Fe3+/Fe2+ и MnO4-/Mn2+. Равновесный потенциал ОВ полуреакции aOx1 + nе = bRed1 может быть рассчитан по уравнению Нернста:

Окислительно-восстановительные реакции (ОВР) протекают сложнее, чем ионообменные и имеют следующие особенности: 1. Потенциал системы зависит от величины стандартного ОВ потенциала системы, концентраций окислителя и восстановителя, концентрации ионов водорода и от температуры. 2. Реакции часто проход
Слайд 18

Окислительно-восстановительные реакции (ОВР) протекают сложнее, чем ионообменные и имеют следующие особенности: 1. Потенциал системы зависит от величины стандартного ОВ потенциала системы, концентраций окислителя и восстановителя, концентрации ионов водорода и от температуры. 2. Реакции часто проходят в несколько стадий, причем каждая из них протекает с различной скоростью. 3. Скорость ОВР ниже скорости реакций ионного обмена. Часто требуются особые условия, обеспечивающие протекание реакций до конца. 4. Присутствие осадителей или комплексообразователей, вызывая изменение концентраций окисленной или восстановленной форм, приводит к изменению ОВ потенциала системы.

Точку эквивалентности фиксируют чаще всего с помощью Red/Ox – индикаторов, т.е. органических соединений, которые изменяют свою окраску в зависимости от потенциала системы. К таким индикаторам относят дифениламин (в окисленном состоянии сине-фиолетовый, а в восстановленном – бесцветный) и N-фенилантр
Слайд 19

Точку эквивалентности фиксируют чаще всего с помощью Red/Ox – индикаторов, т.е. органических соединений, которые изменяют свою окраску в зависимости от потенциала системы. К таким индикаторам относят дифениламин (в окисленном состоянии сине-фиолетовый, а в восстановленном – бесцветный) и N-фенилантраниловая кислота (окисленная форма – красная, восстановленная – бесцветная). Для некоторых реакций используют специфические индикаторы – вещества, изменяющиеся окраску при реакции с одним из компонентов титрования. Например, таким индикатором является крахмал, образующий с йодом адсорбционное соединение синего цвета. В некоторых случаях используют титрование без индикатора, если окраска титранта достаточно яркая и резко изменяется в результате реакции. Примером может служить титрование с помощью перманганата калия (KMnO4).

Перманганатометрия. В сильнокислой среде перманганат-ионы обладают высоким окислительно-восстановительным потенциалом, восстанавливаясь до Mn(II). Поэтому KMnO4 применяют для определения многих восстановителей: Fe(II), H2O2, NO2-, Sb(III), органических кислот. В зависимости от кислотности растворов
Слайд 20

Перманганатометрия

В сильнокислой среде перманганат-ионы обладают высоким окислительно-восстановительным потенциалом, восстанавливаясь до Mn(II). Поэтому KMnO4 применяют для определения многих восстановителей: Fe(II), H2O2, NO2-, Sb(III), органических кислот. В зависимости от кислотности растворов реакция восстановления перманганат-иона протекает различно. В кислой среде реакция протекает по уравнению: В слабощелочной или нейтральных средах: В щелочной среде:

Список похожих презентаций

Теория тарелок. Хроматографические идентификация. Количественный анализ

Теория тарелок. Хроматографические идентификация. Количественный анализ

Теория тарелок (1). Позволяет ответить на следующие вопросы: какую форму должен иметь хроматографический пик, насколько он будет размыт при использовании ...
Фотометрический анализ

Фотометрический анализ

Оптические методы анализа. Атомно-адсорбционный анализ – основанный на поглощении световой энергии атомами анализируемых веществ. Молекулярно-адсорбционный ...
Физико-химический анализ хлеба

Физико-химический анализ хлеба

Количество производства хлеба в 1 день. (кг.). График изменения влажности хлеба. W=(a-b)*100/5. График изменения пористости хлеба. П=27-(v-v,)*100/27. ...
Низкочастотная ультразвуковая экстракция и анализ полисахаридного комплекса цветов сердцевидной

Низкочастотная ультразвуковая экстракция и анализ полисахаридного комплекса цветов сердцевидной

Тверской государственный технический университет Кафедра биотехнологии и химии. Лаборатория «Экос». В пищевой технологии полисахариды (крахмал, пектин, ...
Кто ты и откуда химия?

Кто ты и откуда химия?

Откуда пошло слов химия? Хи́мия (от араб. کيمياء‎‎, предположительно от египетского «chemi» — чёрный, откуда также греческое название Египта, чернозёма ...
Строение вещества химия

Строение вещества химия

СТРОЕНИЕ ВЕЩЕСТВА. Основополагающий вопрос КАК УСТРОЕН МИР? Проблемные вопросы Из чего сделано все на Земле? Почему все устроено так, а не иначе? ...
Своя игра. Физика и химия

Своя игра. Физика и химия

Интегрированный урок ФИЗИКА+ХИМИЯ. Авторы: Орлова И.В., Шувалова Л.В. Муниципальное образовательное учреждение Фоминская средняя общеобразовательная ...
Откуда ты, химия ?

Откуда ты, химия ?

Химические элементы. Роберт Бойль – впервые дал определение химического элемента. Джон Дальтон – впервые ввёл понятие атомного веса. А.М.Бутлеров ...
Органическая химия "Жиры"

Органическая химия "Жиры"

Рацион питания Белки Жиры Углеводы 2а, 2б 1 4б, 5. Роль жиров в здоровом питании спортсменов. Жиры хорошо усваиваются организмом, имеют высокую калорийность, ...
Органическая химия

Органическая химия

история развития органической химии предмет органической химии особенности органических веществ Бутлеров теория строения органических соединений Бутлерова ...
«Электролитическая диссоциация» химия

«Электролитическая диссоциация» химия

Электролитическая диссоциация. H2O. Процесс распада электролита на ионы при растворении его в воде или расплавлении называется электролитической диссоциацией. ...
«Окислительно-восстановительные реакции» химия

«Окислительно-восстановительные реакции» химия

СОДЕРЖАНИЕ:. 1. Какие реакции называются окислительно-восстановительными? 2. Что называют окислителем, восстановителем? 3. Окислительно-восстановительный ...
«Нуклеиновые кислоты» химия

«Нуклеиновые кислоты» химия

Цель урока: сформировать у студентов понимание взаимосвязанности и взаимозависимости веществ в клетке. Задачи урока: повторить строение и основные ...
«Задачи» химия

«Задачи» химия

- исследование задач по нанонауке; - ознакомление с наномиром: о достижениях нанохимии и нанотехнологии; - составление задач по нанонауке; - решение ...
«Жиры» химия

«Жиры» химия

жиры. Оглавление. Определение и общая формула Физические свойства Химические свойства Классификация жиров Животные жиры Растительные жиры Роль жиров ...
М.В. Ломоносов и химия

М.В. Ломоносов и химия

- М.В. Ломоносов был создателем многих химических производств (неорганических пигментов, глазурей, стекла, фарфора). - Он разработал технологию и ...
Незнайка в стране химия

Незнайка в стране химия

Я – известный химик Незнайка. Я знаю все и все могу. Сейчас я взмахну волшебной палочкой и начнется извержение вулкана. Смотри! А теперь все за мной ...
Азот химия

Азот химия

План урока:. История открытия Цели Нахождение в природе Строение и свойства атома и молекулы Физические и химические свойства Получение и применение ...
Органическая химия

Органическая химия

Органическая химия – химия углеводородов и их производных. Углеводороды (УВ) – простейшие органические вещества, молекулы которых состоят из атомов ...
алюминий химия

алюминий химия

получение алюминия. Применение алюминия. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:18 октября 2018
Категория:Химия
Содержит:20 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации