- Ранние приспособления и устройства для счёта

Презентация "Ранние приспособления и устройства для счёта" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Ранние приспособления и устройства для счёта" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

муниципальное казенное общеобразовательное учреждение «Средняя общеобразовательная школа №4 п. Тавричанка Надеждинского района». Ранние приспособления и устройства для счёта. Подготовил: ученик 10 «А» класса Капшитер Константин Руководитель: А.М. Какурин, учитель информатики и ИКТ Тавричанка 2012
Слайд 1

муниципальное казенное общеобразовательное учреждение «Средняя общеобразовательная школа №4 п. Тавричанка Надеждинского района»

Ранние приспособления и устройства для счёта

Подготовил: ученик 10 «А» класса Капшитер Константин Руководитель: А.М. Какурин, учитель информатики и ИКТ Тавричанка 2012

История вычислительной техники
Слайд 2

История вычислительной техники

Глава I
Слайд 3

Глава I

Балансирные весы. Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняе
Слайд 4

Балансирные весы

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы, которые стали, таким образом, одним из первых устройств для количественного определения массы.

Антикитерский механизм. С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э., даже умел моделировать движени
Слайд 5

Антикитерский механизм

С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э., даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т. п. Вычисления выполнялись за счёт соединения более 30 бронзовых колёс и нескольких циферблатов

Считающие часы. В 1623 году Вильгельм Шикард придумал «Считающие часы» — первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестер
Слайд 7

Считающие часы

В 1623 году Вильгельм Шикард придумал «Считающие часы» — первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестерёнок.

Глава II Перфокарты
Слайд 9

Глава II Перфокарты

В 1804 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.
Слайд 10

В 1804 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.

Первые программируемые машины. Определяющая особенность «универсального компьютера» — это программируемость, что позволяет компьютеру эмулировать любую другую вычисляющую систему всего лишь заменой сохранённой последовательности инструкций. В 1835 году Чарльз Бэббидж описал свою аналитическую машину
Слайд 11

Первые программируемые машины

Определяющая особенность «универсального компьютера» — это программируемость, что позволяет компьютеру эмулировать любую другую вычисляющую систему всего лишь заменой сохранённой последовательности инструкций. В 1835 году Чарльз Бэббидж описал свою аналитическую машину. Это был проект компьютера общего назначения, с применением перфокарт в качестве носителя входных данных и программы, а также парового двигателя в качестве источника энергии. Одной из ключевых идей было использование шестерней для выполнения математических функций.

Глава III. Настольные калькуляторы
Слайд 12

Глава III

Настольные калькуляторы

К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни. С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механически
Слайд 13

К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни. С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить. Словом «computer» (буквально — «вычислитель») называлась должность — это были люди, которые использовали калькуляторы для выполнения математических вычислений.

Глава IV. Первое поколение компьютеров с архитектурой фон Неймана
Слайд 14

Глава IV

Первое поколение компьютеров с архитектурой фон Неймана

Манчестерская малая экспериментальная машина (англ. Manchester Small-Scale Experimental Machine - SSEM), также известная как Baby («младенец») — первый электронный компьютер, построенный по принципу совместного хранения данных и программ в памяти. Была создана в Университете Манчестера Фредериком Уи
Слайд 15

Манчестерская малая экспериментальная машина (англ. Manchester Small-Scale Experimental Machine - SSEM), также известная как Baby («младенец») — первый электронный компьютер, построенный по принципу совместного хранения данных и программ в памяти. Была создана в Университете Манчестера Фредериком Уильямсоном и Томом Килберном, и запустила свою первую программу 21 июня 1948 года. Машина была задумана не как рабочая ЭВМ, а как экспериментальный аппарат для изучения свойств компьютерной памяти

Первый универсальный программируемый компьютер в континентальной Европе был создан командой учёных под руководством Сергея Алексеевича Лебедева из Киевского института электротехники СССР, Украина. ЭВМ МЭСМ (Малая электронная счётная машина) заработала в 1950 году. Она содержала около 6000 электровак
Слайд 16

Первый универсальный программируемый компьютер в континентальной Европе был создан командой учёных под руководством Сергея Алексеевича Лебедева из Киевского института электротехники СССР, Украина. ЭВМ МЭСМ (Малая электронная счётная машина) заработала в 1950 году. Она содержала около 6000 электровакуумных ламп и потребляла 15 кВт. Машина могла выполнять около 3000 операций в секунду.

Глава V Второе поколение
Слайд 17

Глава V Второе поколение

Следующим крупным шагом в истории компьютерной техники стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным пл
Слайд 18

Следующим крупным шагом в истории компьютерной техники стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности.

Глава VI Третье поколение
Слайд 19

Глава VI Третье поколение

Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга сделали лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффо
Слайд 20

Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга сделали лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel).

Спасибо за просмотр Весь материал был взят с онлайн-энциклопедии «Википедия»
Слайд 21

Спасибо за просмотр Весь материал был взят с онлайн-энциклопедии «Википедия»

Список похожих презентаций

Световые явления для 5 класса

Световые явления для 5 класса

Корона. Короны – это небольшие цветные кольца вокруг Солнца, Луны или других ярких объектов, которые наблюдаются , когда источник света находится ...
Тормозные устройства

Тормозные устройства

После отключения двигателя движение различных частей станка продолжается по инерции в течение некоторого времени. Это время называют временем выбега. ...
Работа и мощность постоянного тока. Электродвижущая сила. Закон Ома для полной цепи

Работа и мощность постоянного тока. Электродвижущая сила. Закон Ома для полной цепи

Работа и мощность постоянного тока. A = IU / t A = I2 R t A = U2 t / R Q = I2 R t P = A / t P = IU P = I2 R P = U2 / R. Электродвижущая сила. Электродвижущая ...
Расчёт количества теплоты, необходимого для нагревания тела и выделяемого им при его охлаждении

Расчёт количества теплоты, необходимого для нагревания тела и выделяемого им при его охлаждении

Цель урока:. определить формулу расчёта количества теплоты, необходимого для изменения температуры тела; проанализировать формулу; отработка практических ...
Электроприборы для кухни

Электроприборы для кухни

Во многих сказках живут маленькие человечки – гномы, которые помогают добрым людям. Гномы стараются оставаться незамеченными, делая за людей очень ...
Принцип устройства генераторов электрического тока

Принцип устройства генераторов электрического тока

Преобразование и передача электрической энергии. Количественный рост использования энергии привел к качественному скачку ее роли в нашей стране: создалась ...
Закон Ома для участка цепи

Закон Ома для участка цепи

Основные величины, характеризующие электрическую цепь. Характеризует электрическое поле. U вольт [В]. Характеризует сам проводник. Характеризует электрический ...
Физика для всех

Физика для всех

. »: 2. герой Даниэля Дефо «Робинзон Крузо». 3. «Засели необитаемый остров». 4. “Нешкольные задачи по физике”. 5. РЕКЛАМА 6. В 1682 г. известный английский ...
Закон Ома для участка цепи

Закон Ома для участка цепи

Вперед за знаниями! Психологический настрой Я нахожусь сейчас на уроке физики. А обо всём остальном я не буду думать сейчас, я подумаю об этом потом. ...
Закон Ома для участка цепи

Закон Ома для участка цепи

1827 г. Георг Ом. Схема опыта. График зависимости силы тока от напряжения. Сила тока пропорциональна напряжению I~U График – линейная зависимость. ...
Закон Ома для участка цепи

Закон Ома для участка цепи

Повторение: 1.Что такое электрический ток? 2.Что нужно создать в проводнике, чтобы в нём возник и существовал ток? 3.Из каких частей состоит электрическая ...
Закон Ома для участка цепи

Закон Ома для участка цепи

11.1. Закон Ома для неоднородного участка цепи. Один из основных законов электродинамики был открыт в 1822 г. немецким учителем физики Георгом Омом. ...
Закон Ома для полной цепи

Закон Ома для полной цепи

Давайте обсудим. Что такое сторонние силы? Характеристики источника тока. Соединим проводником два металлических шарика, несущих заряды противоположных ...
Требования по обеспечению учета электрической энергии для потребителей с максимальной мощностью свыше 670 кВт

Требования по обеспечению учета электрической энергии для потребителей с максимальной мощностью свыше 670 кВт

Требования к учету. ПП №442, Раздел X. «Правила организации учета электрической энергии на розничных рынках» описывает: Требования к коммерческому ...
Закон Ома для участка цепи

Закон Ома для участка цепи

Схема цепи:. Зависимость силы тока от напряжения (сопротивление постоянное). Электрическая цепь. . . Таблица. График зависимости силы тока от напряжения ...
Уравнение Максвелла для электромагнитного поля

Уравнение Максвелла для электромагнитного поля

Первое уравнение Максвелла. представляет собой закон полного тока: Смысл первого уравнения Максвелла состоит в том, что любой ток проводимости I порождает ...
Закон ома для цепи

Закон ома для цепи

Закона Ома (уточнённый): «Если использовать тщательно отобранные и безупречно подготовленные материалы, то при наличии некоторого навыка из них можно ...
Эксплуатация пружинных манометров для измерения давления

Эксплуатация пружинных манометров для измерения давления

Целью моей работы является изучить устройство прибора для измерения давления пружинными манометрами и узнать как он применяется на практике. Манометр ...
Какие устройства мы можем создать в школьных условиях?

Какие устройства мы можем создать в школьных условиях?

. Какое устройство можно создать для изучении темы «Газовые законы»? Причина выбора данной темы: 1. Хорошо понимаем теорию. 2. Одноклассники могли ...
Закон Ома для полной цепи

Закон Ома для полной цепи

Закон Ома для полной цепи. Электрическое поле Точечный заряд Напряжённость Потенциал Электрический ток Условия существования тока Сила тока Напряжение ...

Конспекты

РАЗРАБОТКА УРОКА ПО ФИЗИКЕ С ПРИМЕНЕНИЕМ ТОГИС для 11 класса

РАЗРАБОТКА УРОКА ПО ФИЗИКЕ С ПРИМЕНЕНИЕМ ТОГИС для 11 класса

1001 идея интересного занятия с детьми. . РАЗРАБОТКА УРОКА ПО ФИЗИКЕ С ПРИМЕНЕНИЕМ ТОГИС. Салионова Галина Георгиевна, преподаватель физики ГБОУ ...
Расчет количества теплоты необходимого для нагревания тела или выделяемого им при охлаждении. Нахождение удельной теплоемкости вещества

Расчет количества теплоты необходимого для нагревания тела или выделяемого им при охлаждении. Нахождение удельной теплоемкости вещества

Урок в 8 классе. Практическая работа по теме:. «Расчет количества теплоты необходимого для нагревания тела или выделяемого им при охлаждении. ...
Постоянный электрический ток. Сила тока. Плотность тока. Закон Ома для однородного участка цепи. Сопротивление

Постоянный электрический ток. Сила тока. Плотность тока. Закон Ома для однородного участка цепи. Сопротивление

Урок № 35-169. Постоянный электрический ток. Сила тока. Плотность тока. Закон Ома для однородного участка цепи. Сопротивление. . Д/з: п.8.1-8.5 [1] ...
Применение производной для решения задач ЕНТ по физике и математике

Применение производной для решения задач ЕНТ по физике и математике

Тема урока: «. Применение производной для решения задач ЕНТ по физике и математике». Тип. : интегрированный урок физики и математики. Цели. :. ...
ЭДС. Закон Ома для полной цепи

ЭДС. Закон Ома для полной цепи

Урок №56 8.04.2014 10 класс. . Тема: «ЭДС. Закон Ома для полной цепи». . Цели урока: познакомить учащихся с условиями, необходимыми для существования ...
Закон Ома для участка цепи

Закон Ома для участка цепи

ПЛАН-КОНСПЕКТ УРОКА. . . ФИО. . Монгуш Лиана Март-ооловна. . . . Место работы. . МБОУ « Хову-Аксмынская СОШ». . . ...
Закон Ома для участка цепи

Закон Ома для участка цепи

. Закон Ома для участка цепи. Цели урока:. · Образовательная - сделать вывод о зависимости силы тока от напряжения и сопротивления участка цепи, ...
УРОК – ПУТЕШЕСТВИЕ С ГЕРОЯМИ ЖЮЛЯ ВЕРНА для 7 класса

УРОК – ПУТЕШЕСТВИЕ С ГЕРОЯМИ ЖЮЛЯ ВЕРНА для 7 класса

1001 идея интересного занятия с детьми. . УРОК – ПУТЕШЕСТВИЕ С ГЕРОЯМИ ЖЮЛЯ ВЕРНА. Бакус Людмила Робертовна, МБОУ СОШ №8 г.Конаково, учитель ...
Закон Ома для участка цепи

Закон Ома для участка цепи

Конспект урока по физике. на тему. Закон Ома для участка цепи. . Учитель физики. Рихерт Т.М. Цели урока:. Образовательная:. ...
Закон Ома для участка цепи

Закон Ома для участка цепи

Предмет. физика. . Класс. 10. (Слайд1). Тема урока. : Закон Ома для участка цепи. Цель урока:. . Раскрыть взаимосвязь силы тока, напряжения ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.