- Волны и колебания

Презентация "Волны и колебания" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9

Презентацию на тему "Волны и колебания" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 9 слайд(ов).

Слайды презентации

Стоячие волны. Углы стоячей волны — неперемещающиеся точки волны, амплитуда колебаний которых равна нулю. Расстояние между соседними узлами стоячей волы одинаково и равно половине длины волны внешнего гармонического воздействия. Для шнура, закрепленного с одного конца, расстояние между узлами стояче
Слайд 1

Стоячие волны

Углы стоячей волны — неперемещающиеся точки волны, амплитуда колебаний которых равна нулю. Расстояние между соседними узлами стоячей волы одинаково и равно половине длины волны внешнего гармонического воздействия. Для шнура, закрепленного с одного конца, расстояние между узлами стоячей волны не зависит от длины шнура. Моды колебаний. Если закреплены оба конца шнура (или струны), отражение волны происходит от обоих концов. В этом случае расстояние между узлами образующейся в шнуре (струне) стоячей волны не может быть произвольным и зависит лишь от длины шнура (струны). Для объяснения этого эффекта рассмотрим распространение по струне длиной l внешнего воздействия, производимого вблизи ее левого закрепленного конца. После отражения от правого конца струны волна, достигнув ее левого конца и отразившись от него, вновь оказывается у правого конца. Такая дважды отраженная волна, распрострняющаяся со скоростью v, может усилить первоначальное воздействие, если достигнет правого конца через промежуток времени 2l/V, кратный периоду внешнего воздействия: 2l/v=Tn(n=1,2,3,…) Следовательно, в струне будут поддерживаться только такие гармонические внешние воздействия длина волны (λ = VТ) которых связана с длиной струны соотношением l/(λ/2)=n (n=1,2,3,…).

На длине струны, закрепленной на концов укладывается целое число п полуволн поперечных стоячих волн. Только такие волны, называемые модами собственных колебаний, могут длительно поддерживаться в струне. Волны других частот (длин волн) не усиливают первоначальное воздействие при отражении от концов с
Слайд 2

На длине струны, закрепленной на концов укладывается целое число п полуволн поперечных стоячих волн. Только такие волны, называемые модами собственных колебаний, могут длительно поддерживаться в струне. Волны других частот (длин волн) не усиливают первоначальное воздействие при отражении от концов струны и поэтому быстро затухают в результате потерь энергии на трение. Частота собственных колебаний струны (v = 1/Т = V/λ), связана с ее длиной соотношением vn=(v/21)n (n=1,2,3,…). Мода колебаний, соответствующая n=1 называется первой гармоникой собственных колебаний или основной модой. Для произвольного n > 1 соответствующая мода колебаний называется n-й гармоникой или n-м обертоном. Напомним, что собственные колебания могут происходить в различных средах. Например, в закрытом цилиндре, наполненном газом, возникают моды собственных продольных колебаний газа под действием перемещения поршня. Иа рисунке 254 приведены первая и вторая гармоники отклонений молекул газа от положений равновесия, а также показаны области с повышенной концентрацией молекул (повышенным давлением газа). Стрелками отмечено направление движения молекул газа в данный момент времени. Рассмотренные нами собственные колебания струн характерны для струнных музыкальных инструментов, а колебания в ограниченном объе­ме газа дм духовых инструментов.

Звуковые волны. Возникновение и восприятие звуковых волн Звуки, воспринимаемые человеческим ухом, являются одним из важнейших источников информации об окружающем мире. Шум моря и ветра, пение птиц, голоса людей и крики животных, раскаты грома, звуки движущихся машин, воспринимаемые человеческим ухом
Слайд 3

Звуковые волны

Возникновение и восприятие звуковых волн Звуки, воспринимаемые человеческим ухом, являются одним из важнейших источников информации об окружающем мире. Шум моря и ветра, пение птиц, голоса людей и крики животных, раскаты грома, звуки движущихся машин, воспринимаемые человеческим ухом, позволяют легче адаптироваться в изменяющихся внешних условиях. Рассмотрим процесс возникновения и и восприятия звуковых волн. Звуковые волны — упругие волны в среде, вызывающие у человека слуховые ощущения. Колебания источника звука (например, струны или голосовых связок) вызывают в воздухе волны сжатия и разрежения. Достигнув человеческого уха, звуковые волны заставляют барабанную перепонку совершать им вынужденные колебания с частотой, равной частоте колебаний источника. Свыше 20 ООО нитевидных рецепторных окончаний, находящихся во внутреннем ухе, преобразуют механические колебания в электрические импульсы. При передаче импульсов по нервным волокнам в головной мозг у человека возникают определенные слуховые ощущения. Слуховые ощущения у человека вызывают звуковые волны с частотой колебаний, лежащей в пределах от 16 Гц до 20 кГц. Изучению звука посвящена специальная область физики - акустика.

Частота колебаний обратно пропорциональна размеру колеблющегося источника, поэтому инфразвуковые волны, имеющие малую частоту, вызываются источниками, размеры которых превышают расстояния, характерные для повседневного опыта человека. Такие волны возникают при землетрясении, извержении вулкана, гроз
Слайд 4

Частота колебаний обратно пропорциональна размеру колеблющегося источника, поэтому инфразвуковые волны, имеющие малую частоту, вызываются источниками, размеры которых превышают расстояния, характерные для повседневного опыта человека. Такие волны возникают при землетрясении, извержении вулкана, грозовом разряде, взрыве ядерной бомбы. Звуковые волны создаются источниками, имеющими размеры от нескольких миллиметров до десятков метров. Миллиметровые источники могут генерировать ультразвуковые волны, которые (так же как и инфразвук) не вызывают слуховых ощущений у человека. Ультразвук способны излучать и улавливать некоторые животные, например летучие мыши и дельфины. Анализ отраженных сигналов, полученных при ультразвуковой локации, помогает этим животным ориентироваться в пространстве в условиях слабой освещенности или отсутствия видимого света и находить пищу. Распространение звуковых волн. Необходимое условие распространения звуковых волн - наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний. Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю. Скорость распространения звуковых волн определяется скоростью передачи взаимодействия между частицами. В газе скорость звука vг оказывается порядка (точнее - несколько меньше) тепловой скорости V кв молекул и поэтому увеличивается с ростом температуры газа. В воздухе при температуре 20 °С Vг = 343 м/с = 1235 км/ч.

Высота, тембр, громкость звука. Чем больше потенциальная энергия взаимодействия молекул вещества, тем больше скорость звука, поэтому скорость звука в твердом теле Vтт, как правило, больше скорости звука в жидкости Vж, которая, в свою очередь, превышает скорость звука в газе Vг: Vтт>Vж>Vг. Напр
Слайд 5

Высота, тембр, громкость звука.

Чем больше потенциальная энергия взаимодействия молекул вещества, тем больше скорость звука, поэтому скорость звука в твердом теле Vтт, как правило, больше скорости звука в жидкости Vж, которая, в свою очередь, превышает скорость звука в газе Vг: Vтт>Vж>Vг. Например, в морской воде скорость звука Vж = 1513 м/с. В стали, где могут распространять как поперечные, так и продольные волны, ско- рость их распространения различна. Поперечные волны распространяются со скоростью 3300 м/с а продольные со скоростью 6600 м/с. Высота звука. Слуховые ощущения человека определяются физическими параметрами звуковой полны, воздействующей на орган слуха. Традиционными физиологическими характеристиками воспринимаемого звука являются высота, тембр и громкость, Выясним, какие физические величины определяют подобную классификацию звуков. Высота звука определяется частотой источника звуковых колебаний. Чем больше частота Колебаний, тем выше звук. Колебаниям малых Частот соответствуют низкие звуки. Например, писк комара соответствует 500—600 Взмахам его крыльев в секунду, жужжание шмеля 220 взмахам. Колебания голосовых связок певцов могут Создавать звуки в диапазоне от 80 до 1400 Гц (хотя в эксперименте фиксировались

рекордно низкая (44 Гц) и высокая (2350 Гц) частоты). В телефоне для воспроизведения человеческой речи используется область частот от 300 2000 Гц. Тембр звука. Звучание одной и той же ноты исполнении различных музыкальных инструментов или голоса отличает тембр. Данной ноте соответствует определенный
Слайд 6

рекордно низкая (44 Гц) и высокая (2350 Гц) частоты). В телефоне для воспроизведения человеческой речи используется область частот от 300 2000 Гц. Тембр звука. Звучание одной и той же ноты исполнении различных музыкальных инструментов или голоса отличает тембр. Данной ноте соответствует определенный период колебаний. Форма колебаний (или зависимость давления воздуха создаваемого источником колебаний от времени) отличается для разных инструментов. Это объясняется тем, что любое реальное колебание складывается из гармонических колебаний основной моды и обертонов. Если колебание струны имеет форму, близкую к треугольной, то его можно представить как сумму трех гармонических колебаний с частотами v, 3v, 5v. Изменение относительной амплитуды колебаний основной моды и обертонов влияет на форму результирующего колебания и соответственно на его тембр. Тембр звука определяется формой звуковых колебаний. Различие формы колебаний, имеют одинаковый период, связано с разной относительной амплитудой основной моды и обертонов. Громкость звука. Изменение давления в звуковой волне определяет громкость звука. Громкость звука зависит от амплитуды колебаний давления в звуковой волне. Минимальное изменение давления, которое может фиксироваться человеческим ухом, определяет порог слышимости. При частоте 1 кГц порог слышимости составляет 10^-5Па, или 10^-10атм. Подобное изменение давления означает, что человеческое ухо фиксирует амплитуду колебаний молекул порядка 1 нм.

Высота, тембр, громкость звука. Максимальное изменение давления, которое еце в состоянии фиксировать человеческое ухо, определяет болевой порог. Болевой порог соответствует изменению давления 10^-4атм, или 10 Па. На практике громкость звука характеризуется уровнем интенсивности звука. Интенсивность
Слайд 7

Высота, тембр, громкость звука

Максимальное изменение давления, которое еце в состоянии фиксировать человеческое ухо, определяет болевой порог. Болевой порог соответствует изменению давления 10^-4атм, или 10 Па. На практике громкость звука характеризуется уровнем интенсивности звука. Интенсивность звука — отношение падающей на поверхность звуковой мощности к площади этой поверхности. Единица интенсивности звука ватт на квадратный метр (Вт/м2). Порог слышимости соответствует интенсивности звука I0 = 10^-12Вт/м2; болевой порог Iб.п = 1 Вт/м2. Следовательно, болевой порог отличается по интенсивности звука от порога слышимости на 12 порядков. На столько же порядков отличается диаметр Земли от толщины человеческого волоса. Показатель степени и числа 10, характеризующий порядок величины, называется деся­ичным логарифмом: k=lg(10^k). Уровень интенсивности звука — десятичный логарифм отношения двух интенсивностей звука: k=lg(I/I0) На практике в качестве уровня интенсивности звука принимается величина, в 10 раз большая: β=10lg(I/I0) Подобно тому как 5 м соответствуют 50 дм, за единицу уровня интенсивности звука принят 1 дБ. В таблице 24 приведен уровень интенсивности различных звуков. Увеличение интенсивности звука на 10 дБ примерно удваивает громкость. Уровень интенсивности 120 дБ является бо­левым порогом

Основные положения. Волновой процесс — процесс переноса энергии без переноса вещества. Механическая волна — возмущение, распространяющееся в упругой среде. Наличие упругой среды — необходимое условие распространения механических волн. Перенос энергии и импульса в среде происходит в результате взаимо
Слайд 8

Основные положения

Волновой процесс — процесс переноса энергии без переноса вещества. Механическая волна — возмущение, распространяющееся в упругой среде. Наличие упругой среды — необходимое условие распространения механических волн. Перенос энергии и импульса в среде происходит в результате взаимодействия между соседними частицами среды. Волны бывают продольные и поперечные. Продольная механическая волна - волна, в которой движение частиц среды происходит в направлении распространения волны. Поперечная механическая волна — волна, в которой частицы среды перемещаются перпендикулярно направлению распространения волны. Продольные волны могут распространяться в любой среде. Поперечные волны в газах и жидкостях не возникают, так как в них отсутствуют фиксированные положения частиц. Периодическое внешнее воздействие вызывает периодические волны. Гармоническая волна - волна, порождаемая гармоническими колебаниями частиц среды. Длина волны - расстояние, на которое распространяется волна за период колебаний ее источника: λ=Vt [v-скорость распространения волны]. Скорость механической волны - скорость распространения возмущения в среде. Поляризация- упорядоченность направлений колебаний частиц в среде. Плоскость поляризации — плоскость, в которой колеблются частицы среды в волне. Линейно-поляризованная механическая волна — волна, частицы которой колеблются вдоль определенного направления (линии).

Поляризатор — устройство, выделяющее волну определенной поляризации. Стоячая волна — волна, образующаяся в результате наложения двух гармонических волн, распространяющихся навстречу друг другу и имеющих одинаковый период, амплитуду и поляризацию. Пучности стоячей волны — положение точек, имеющих мак
Слайд 9

Поляризатор — устройство, выделяющее волну определенной поляризации. Стоячая волна — волна, образующаяся в результате наложения двух гармонических волн, распространяющихся навстречу друг другу и имеющих одинаковый период, амплитуду и поляризацию. Пучности стоячей волны — положение точек, имеющих максимальную амплитуду колебаний. Узлы стоячей волны — неперемещающиеся точки волны, амплитуда колебаний которых равна нулю. На длине l струны, закрепленной на концах, укладывается целое число n полуволн поперечных стоячих волн: l/(λ/2)=n(n=1,2,3,…). Такие волны называются модами колебаний. Мода колебаний для произвольного целого числа п > 1 называется n-й гармоникой или n-м обертоном. Мода колебаний для n = 1 называется первой гармоникой или основной модой колебаний. Звуковые волны — упругие волны в среде, вызывающие у человека слуховые ощущения. Частота колебаний, соответствую­щих звуковых волнам, лежит в пределах от 16 Гц до 20 кГц. Скорость распространения звуковых волн определяется скоростью передачи взаимодействия между частицами. Скорость звука в твердом теле Vтт, как правило, больше скорости звука в жидкости уж, которая, в свою очередь, превышает скорость звука в газе Vr: Vтт>Vж>Vг. Звуковые сигналы классифицируют по высоте, тембру и громкости. Высота звука определяется частотой источника звуковых колебаний. Чем больше частота колебаний, тем выше звук; колебаниям малых частот соответствуют низкие звуки. Тембр звука определяется формой звуковых колебаний. Различив формы колебаний, имеющих одинаковый период, связано с разными относительными амплитудами основной моды и обертоном. Громкость звука характеризуется уровнем интенсивности звука. Интенсивность звука — энергия звуковых волн, падающая на площадь 1 м^2 за 1 с. Единица интенсивности звука — ватт на квадратный метр (Вт/м2). Уровень интенсивности β=10lg(I/I0) где I — интенсивность звука, I0 = 10^-12 Вт/м2 интенсивность, соответствующая порогу слышимости. Порог слышимости характеризуется минимальной интенсивностью звука, которая может фиксироваться человеческим ухом. Единица уровня интенсивности -децибел (дБ).

Список похожих презентаций

Источники звука. Звуковые колебания и волны

Источники звука. Звуковые колебания и волны

"Источники звука. Звуковые колебания и волны". Цели: образовательная: сформировать понятие звука с точки зрения физики; изучить механизм передачи ...
Электромагнитные колебания и волны

Электромагнитные колебания и волны

повторение основных понятий, графиков и формул, связанных с электромагнитными колебаниями и волнами в соответствии с кодификатором ГИА и планом демонстрационного ...
Источники звука, звуковые волны и колебания

Источники звука, звуковые волны и колебания

Колебания. Колебание- вид движения, главной особенностью которого является периодичность. Свободные – Колебания в системе под действием внутренних ...
Механические колебания и волны. Звук

Механические колебания и волны. Звук

Ответы к тесту. «Оттого телега заскрипела, что давно дегтю не ела». «Ударь обухом в дерево, дупло само скажется». «Как аукнется, так и откликнется». ...
Механические колебания и звуковые волны

Механические колебания и звуковые волны

Механические колебания – это системы, которые могут совершать колебательные движения. Примеры механического колебания:. Механические колебания. Гармонические ...
Механические колебания и волны

Механические колебания и волны

Содержание. 1. Колебания 2. Виды колебаний 2.1. Свободные колебания 2.2. Математический маятник 2.3. Пружинный маятник 3. Гармонические колебания ...
Звуковые колебания и волны

Звуковые колебания и волны

Содержание. Звуковые колебания Источники звука Характеристики Распространение звуков Свойства звуковых волн Слух. Звук. Человеческое ухо слышит звуки ...
Механические колебания и волны. Акустика

Механические колебания и волны. Акустика

Периодические механические процессы в живом организме. Колебания – это процессы повторяющиеся во времени. При этом система многократно отклоняется ...
Электромагнитные колебания и волны

Электромагнитные колебания и волны

Из истории. Существование электромагнитных волн было предсказано М. Фарадеем в 1832. Дж. Максвелл в 1865г. теоретически показал, что электромагнитные ...
Механические колебания и волны

Механические колебания и волны

Механические колебания и волны. Механические колебания. Виды колебаний Затухающие колебания – это колебания, амплитуда которых, под действием сил ...
Электромагнитные колебания решение задач

Электромагнитные колебания решение задач

Решение задач на тему «ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ». Заряд q изменяется с течением времени t в соответствии с уравнением q=2*10-6соs104 πt. Записать ...
Электромагнитные колебания

Электромагнитные колебания

Определение. Электромагнитные колебания – это периодические или почти периодические изменения заряда, силы тока и напряжения. Колебания происходят ...
Электромагнитные колебания

Электромагнитные колебания

О, сколько нам открытий чудных Готовят просвещения дух И опыт, сын ошибок трудных, И гений, парадоксов друг, И случай, бог изобретатель. А. С. Пушкин. ...
Волны электромагнитные

Волны электромагнитные

Природа электромагнитной волны. Электромагнитная волна представляет собой распространение в пространстве с течением времени переменных (вихревых) ...
Гармонические колебания и маятники

Гармонические колебания и маятники

План лекции. 1. Колебательное движение. Гармоническое колебание 2. Скорость и ускорение гармонического колебания 3. Энергия гармонического колебательного ...
Механические колебания

Механические колебания

Колебания - один из самых распространенных процессов в природе и технике Механические колебания – это движения, которые точно или приблизительно повторяются ...
Звуковые колебания

Звуковые колебания

План урока. Повторение опорных знаний Объяснение нового материала Закрепление изученного материала Домашнее задание. Повторение кроссворд. Возмущения, ...
Волны

Волны

Волны – процесс распространения колебаний в пространстве. Поперечные волны – колебания перпендикуляры направлению распространения волны. Продольные ...
Звуковые колебания

Звуковые колебания

Определение. Упругие волны, продольно распространяющиеся в среде и создающие в ней механические колебания. Звуки музыкальных инструментов. Звуки гитары ...
Звуковые колебания

Звуковые колебания

АКУСТИКА- РАЗДЕЛ ФИЗИКИ, В КОТОРОМ ИЗУЧАЮТСЯ ЗВУКОВЫЕ ЯВЛЕНИЯ. Источники звука. Звук создается коротким или долгим колебанием каких-то предметов. ...

Конспекты

Обобщение и систематизация знаний по теме «Механические колебания и волны

Обобщение и систематизация знаний по теме «Механические колебания и волны

. МБОУ «Клюквинская средняя общеобразовательная школа». Открытый урок по физике в 9 классе на тему«Обобщение и систематизация ...
Механические колебания и волны. Звук

Механические колебания и волны. Звук

9 класс. Повторительно-обобщающий урок. . «Механические колебания и волны. Звук». Цели урока:. Повторить, обобщить и оценить знания учащихся ...
Механические колебания и волны. Звук

Механические колебания и волны. Звук

Урок – соревнование в 9 классе по теме :. «Механические колебания и волны. Звук.». Тип урока:. повторительно – обобщающий . Форма урока:. ...
Механические колебания и волны. Звук

Механические колебания и волны. Звук

Муниципальное общеобразовательное учреждение. . «Средняя общеобразовательная школа с. Агафоновка. . Питерского района Саратовской области». ...
Механические колебания и волны. Звук

Механические колебания и волны. Звук

ОГОУ СПО. . "Белгородский механико-технологический колледж". Методическая разработка. урока по физике. . ...
Механические колебания и волны

Механические колебания и волны

Механические колебания и волны. Урок обобщения в 9 классе. Цели урока:. . . обобщить, закрепить знания учащихся по данной теме, совершенствовать ...
Механические колебания и волны вокруг нас

Механические колебания и волны вокруг нас

Муниципальное бюджетное образовательное учреждение. . Средняя общеобразовательная школа села Суслово. . Конспект урока по физике в 9 классе«. ...
Звуковые колебания и волны

Звуковые колебания и волны

К. онспект урока по физике. . . Тема урока. : Звуковые колебания и волны. . Цель урока. . О. рганизация условий достижения учащимися образовательных ...
Электромагнитные колебания

Электромагнитные колебания

11 класс. Урок. . Тема :. «Электромагнитные колебания». Цель:. Продолжить формирование  умений  решения  задач. по электромагнитным колебаниям. ...
Свободные механические колебания

Свободные механические колебания

Мальцева Людмила Анатольевна,. учитель физики,. первая квалификационная категория. муниципальное бюджетное общеобразовательное учреждение. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.