- Уравнение Максвелла для электромагнитного поля

Презентация "Уравнение Максвелла для электромагнитного поля" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15

Презентацию на тему "Уравнение Максвелла для электромагнитного поля" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 15 слайд(ов).

Слайды презентации

Уравнения Максвелла для электромагнитного поля. 1. Аналогия между характеристиками электрического и магнитного полей:
Слайд 1

Уравнения Максвелла для электромагнитного поля

1. Аналогия между характеристиками электрического и магнитного полей:

Первое уравнение Максвелла. представляет собой закон полного тока: Смысл первого уравнения Максвелла состоит в том, что любой ток проводимости I порождает вихревое магнитное поле , циркуляция которого вдоль произ-вольного замкнутого контура l равна I. Одновременно, всякое изменение вектора электриче
Слайд 2

Первое уравнение Максвелла

представляет собой закон полного тока: Смысл первого уравнения Максвелла состоит в том, что любой ток проводимости I порождает вихревое магнитное поле , циркуляция которого вдоль произ-вольного замкнутого контура l равна I. Одновременно, всякое изменение вектора электрического смещения также как и ток проводимости, порождает вихревое магнитное поле .

Второе уравнение Максвелла. представляет собой закон электромагнитной индукции. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводящем контуре. Иначе « изменяю
Слайд 3

Второе уравнение Максвелла

представляет собой закон электромагнитной индукции. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводящем контуре. Иначе « изменяющееся во времени магнитное поле порождает вихревое электрическое поле , циркуляция которого вдоль произвольного замкнутого контура l равна

Третье и четвертое уравнения Максвелла. Третье уравнений Максвелла в интегральной форме выражает тот факт, что в природе отсутствуют магнитные заряды, т.е. все силовые линии вектора являются замкнутыми линиями. Суть четвертого уравнения состоит в том, что поток вектора электрического смещения через
Слайд 4

Третье и четвертое уравнения Максвелла

Третье уравнений Максвелла в интегральной форме выражает тот факт, что в природе отсутствуют магнитные заряды, т.е. все силовые линии вектора являются замкнутыми линиями. Суть четвертого уравнения состоит в том, что поток вектора электрического смещения через произвольную замкнутую поверхность равен алгебраической сумме свободных зарядов ΣQ, расположенных внутри этой поверхности.

Полная система уравнений Максвелла в дифференциальной форме Отметим, что в уравнениях Максвелла (1873 г.) заложено существование электромагнитных волн. Согласно уравнениям Максвелла, всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, а всякое переменно
Слайд 5

Полная система уравнений Максвелла в дифференциальной форме Отметим, что в уравнениях Максвелла (1873 г.) заложено существование электромагнитных волн. Согласно уравнениям Максвелла, всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, а всякое переменное электрическое поле вызывает появление вихревого магнитного поля. Возбуждение взаимосвязанных электрического и магнитного полей и есть электромагнитная волна. Экспериментальное подтверждение гениальных предсказаний Максвелла было осуществлено в опытах Герца в 1888 г.

Свободные и вынужденные гармонические колебания в резонансном контуре
Слайд 6

Свободные и вынужденные гармонические колебания в резонансном контуре

II Закон Кирхгофа для замкнутой RLC-цепи: Рассмотрим сначала случай, когда в контуре нет потерь (R = 0). Тогда. - собственная частота свободных колебаний контура. - период свободных колебаний.
Слайд 7

II Закон Кирхгофа для замкнутой RLC-цепи: Рассмотрим сначала случай, когда в контуре нет потерь (R = 0). Тогда

- собственная частота свободных колебаний контура

- период свободных колебаний.

Колебания тока опережают по фазе на π/2 колебания напряжения.
Слайд 8

Колебания тока опережают по фазе на π/2 колебания напряжения.

Затухающие колебания. Время релаксации – время в течение которого амплитуда колебаний уменьшается в е раз. Частота ω и период Т затухающих колебаний: (ω - Число полных колебаний, совершаемых системой за время затухания τ .
Слайд 10

Затухающие колебания

Время релаксации – время в течение которого амплитуда колебаний уменьшается в е раз

Частота ω и период Т затухающих колебаний:

(ω - Число полных колебаний, совершаемых системой за время затухания τ .

Вычислим отношение. Оно, как и в механике, называется декрементом затухания, а его логарифм. логарифмическим декрементом затухания. θ=δТ. Величина, обратная логариф-мическому декременту называется добротностью Q колебательного контура: и :
Слайд 11

Вычислим отношение

Оно, как и в механике, называется декрементом затухания, а его логарифм

логарифмическим декрементом затухания. θ=δТ

Величина, обратная логариф-мическому декременту называется добротностью Q колебательного контура:

и :

Вынужденные колебания в RLC контуре. Установившиеся колебания, возникающие в контуре под действием синусоидальной ЭДС, называются вынужденными колебаниями. Периодический внешний источник обеспечивает приток энергии к системе и, несмотря на наличие потерь , не дает колебаниям затухнуть. Установившиес
Слайд 12

Вынужденные колебания в RLC контуре

Установившиеся колебания, возникающие в контуре под действием синусоидальной ЭДС, называются вынужденными колебаниями.

Периодический внешний источник обеспечивает приток энергии к системе и, несмотря на наличие потерь , не дает колебаниям затухнуть. Установившиеся вынужденные колебания всегда происходят на частоте внешней ЭДС -ω .

Дифференциальное уравнение вынужденных синусоидальных колебаний в резонансном контуре при действии ЭДС

Вектор напряжения на резисторе URm и ток в резисторе Im совпадают по фазе, вектор напряжения на индуктивности ULm опережает ток в индуктив-ности Im на 90º, а вектор напряжения на конденсато-ре UCm отстает от тока в конденсаторе Im на 90º.
Слайд 13

Вектор напряжения на резисторе URm и ток в резисторе Im совпадают по фазе, вектор напряжения на индуктивности ULm опережает ток в индуктив-ности Im на 90º, а вектор напряжения на конденсато-ре UCm отстает от тока в конденсаторе Im на 90º.

Резонанс. Явление резкого возрастания амплитуды тока при равенстве частоты ω внешнего воздействия и собственной резонансной частоты свободных колебаний контура ω0 называется резонансом. Чем меньше сопротивление потерь R в контуре, тем выше и острее резонансная характеристика. Степень “остроты” опред
Слайд 14

Резонанс

Явление резкого возрастания амплитуды тока при равенстве частоты ω внешнего воздействия и собственной резонансной частоты свободных колебаний контура ω0 называется резонансом.

Чем меньше сопротивление потерь R в контуре, тем выше и острее резонансная характеристика. Степень “остроты” определяется добротностью Q колебательной системы:

Мощность в цепи переменного тока. действующие или эффективные значения напряжения и тока; множитель cosφ называется коэффициентом мощности. Пример. В сеть переменного тока и напряжением U= 220 В и частотой f=50 Гц включены последовательно конденсатор C=31,8 мкФ, резистор R=100 Ом и индуктивность L=
Слайд 15

Мощность в цепи переменного тока

действующие или эффективные значения напряжения и тока; множитель cosφ называется коэффициентом мощности.

Пример. В сеть переменного тока и напряжением U= 220 В и частотой f=50 Гц включены последовательно конденсатор C=31,8 мкФ, резистор R=100 Ом и индуктивность L= 0,318 Гн. Найдите действующее значение тока I, напряжений UC, UR, UL на элементах контура и мощность P, потребляемую цепью.

ZR=R=100 Ом, ZL=jωL=jXL=j220 Ом,

UR=Ir=134В, UL=IωL=295В, UC=I/(ωC)= 120,6 В.

Список похожих презентаций

Теория электромагнитного поля

Теория электромагнитного поля

Содержание. Пояснительная записка. Цели и задачи раздела. Психолого - педагогическое объяснение специфики восприятия и освоения учебного материала ...
Уравнение Максвелла и его свойства

Уравнение Максвелла и его свойства

. . . . Рассмотрим цепь переменного тока, содержащую плоский конденсатор. . . . - Закон полного тока. . . . Закон полного тока. Теорема Гаусса. . ...
Влияние электромагнитного поля на организм человека

Влияние электромагнитного поля на организм человека

За последнее время возник и быстро сформировался новый фак-тор окружающей среды - электромагнитное поле (ЭМП) антропогенного (искусственного) происхождения. ...
Действие электромагнитного поля

Действие электромагнитного поля

ОС. Развитие взглядов на природу света. Свет как частный случай электромагнитных волн. Место световых волн в диапазоне электромагнитных волн. Частицы ...
Влияние электромагнитного поля

Влияние электромагнитного поля

Цели и задачи проекта. Цели Понять, как магнитное поле действует на биологические объекты Земли. Научиться работать с информацией. Задачи: Исследовать ...
Уравнение состояния идеального газа

Уравнение состояния идеального газа

Цель урока:. Вывести зависимость между макроскопическими параметрами, характеризующими состояние газа. Проверить экспериментально уравнение состояния ...
Теория кристаллического поля

Теория кристаллического поля

d-орбитали. Локализация, орбитали простираются в пространстве. Сильнее взаимодействуют с лигандами. f - орбитали. Общие положения ТКП. Теория кристаллического ...
Расчёт количества теплоты, необходимого для нагревания тела и выделяемого им при его охлаждении

Расчёт количества теплоты, необходимого для нагревания тела и выделяемого им при его охлаждении

Цель урока:. определить формулу расчёта количества теплоты, необходимого для изменения температуры тела; проанализировать формулу; отработка практических ...
Применение математического аппарата для решения задач в физике

Применение математического аппарата для решения задач в физике

Математика с её строгими рассуждениями и доказательствами предлагает физике ясную форму, которая помогает нашим размышлениям. При сборе информации, ...
Потенциал, работа сил электростатического поля

Потенциал, работа сил электростатического поля

Тема 3. ПОТЕНЦИАЛ И РАБОТА ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ. СВЯЗЬ НАПРЯЖЕННОСТИ С ПОТЕНЦИАЛОМ. 3.1. Теорема о циркуляции вектора 3.2. Работа сил электростатического ...
Энергетические характеристики электрического поля

Энергетические характеристики электрического поля

Заряд в электрическом поле. На заряд , помещенный в электростатическое поле, действует сила со стороны этого поля. При перемещении заряда эта сила ...
Характеристика электростатического поля

Характеристика электростатического поля

Wp – потенциальная энергия заряда в электростати-ческом поле. Работа электростатического поля по перемещению заряда. +q d1 1 -q q. , действующая на ...
Уравнение Шредингера. Элементы квантовой механики

Уравнение Шредингера. Элементы квантовой механики

Общее уравнение Шредингера. ШРЁДИНГЕР, ЭРВИН австрийский физик. Нобелевская премия по физике 1933 ( с П.Дираком). Стационарное уравнение Шредингера. ...
Влияние электромагнитного излучения микроволновой печи на прорастание и рост растений

Влияние электромагнитного излучения микроволновой печи на прорастание и рост растений

Гипотеза исследования:. Если электромагнитное излучение отрицательно влияет на организм человека, то оно должно угнетать интенсивность прорастания ...
Влияние электромагнитного излучения компьютеров на организм школьника

Влияние электромагнитного излучения компьютеров на организм школьника

План работы:. 1. «Я и компьютер» 2. Нагрузка на зрение. 3. Стесненная поза. 4. Затрудненное дыхание. 5. Остеохондроз. 6. Заболевание суставов кистей ...
Влияние электрического поля на рост кристаллов

Влияние электрического поля на рост кристаллов

Цель исследования. экспериментальное изучение влияния бесконтактного слабого электрического поля на процесс роста монокристаллов растворимых веществ. ...
Влияние магнитного поля на прорастание семян

Влияние магнитного поля на прорастание семян

Мы предполагаем: искусственное магнитное поле положительно влияет на прорастание семян Цель: выявить влияние магнитного поля на прорастание семян. ...
Виды электромагнитного излучения. Спектры

Виды электромагнитного излучения. Спектры

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ возбуждается различными излучающими объектами, – заряженными частицами, атомами, молекулами, антеннами и пр. В зависимости ...
Физика для любознательных

Физика для любознательных

"физика для любознательных". Цель дополнительного курса по физике:. 1.Формирование у учащихся старших классов общеобразовательной школы с гуманитарным ...

Конспекты

Уравнение состояния идеального газа

Уравнение состояния идеального газа

Власова Надежда Ивановна. учитель физики. МКОУ Петропавловская СОШ. Тема урока. «Уравнение состояния идеального газа». ...
УРОК – ПУТЕШЕСТВИЕ С ГЕРОЯМИ ЖЮЛЯ ВЕРНА для 7 класса

УРОК – ПУТЕШЕСТВИЕ С ГЕРОЯМИ ЖЮЛЯ ВЕРНА для 7 класса

1001 идея интересного занятия с детьми. . УРОК – ПУТЕШЕСТВИЕ С ГЕРОЯМИ ЖЮЛЯ ВЕРНА. Бакус Людмила Робертовна, МБОУ СОШ №8 г.Конаково, учитель ...
Решение задач на закон Ома для участка цепи

Решение задач на закон Ома для участка цепи

ОТКРЫТЫЙ УРОК по физике. «Решение задач на закон Ома для участка цепи». Учитель: _______ Васильева Зоя Константиновна. Урок по теме. : Решение ...
Соединение проводников. Закон Ома для полной цепи. Электродвижущая сила

Соединение проводников. Закон Ома для полной цепи. Электродвижущая сила

Урок № 36-169 Соединение проводников. Закон Ома для полной цепи. Электродвижущая сила. Д/з: 8.6; п.8.7; п.8.9 [1]. 1. Соединение проводников. ...
Постоянный электрический ток. Сила тока. Плотность тока. Закон Ома для однородного участка цепи. Сопротивление

Постоянный электрический ток. Сила тока. Плотность тока. Закон Ома для однородного участка цепи. Сопротивление

Урок № 35-169. Постоянный электрический ток. Сила тока. Плотность тока. Закон Ома для однородного участка цепи. Сопротивление. . Д/з: п.8.1-8.5 [1] ...
РАЗРАБОТКА УРОКА ПО ФИЗИКЕ С ПРИМЕНЕНИЕМ ТОГИС для 11 класса

РАЗРАБОТКА УРОКА ПО ФИЗИКЕ С ПРИМЕНЕНИЕМ ТОГИС для 11 класса

1001 идея интересного занятия с детьми. . РАЗРАБОТКА УРОКА ПО ФИЗИКЕ С ПРИМЕНЕНИЕМ ТОГИС. Салионова Галина Георгиевна, преподаватель физики ГБОУ ...
Закон Ома для участка цепи

Закон Ома для участка цепи

Конспект урока по физике. на тему. Закон Ома для участка цепи. . Учитель физики. Рихерт Т.М. Цели урока:. Образовательная:. ...
Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Урок № 43-169 Действие магнитного поля на движущийся заряд. Сила Лоренца. Сила Лоренца - сила, действующая со стороны магнитного поля на движущуюся ...
Закон Ома для участка цепи

Закон Ома для участка цепи

Конспект открытого урока в 8 классе по теме : « Закон Ома для участка цепи». Дата: 20.12.2011 г. Тип урока:. изучение нового материала. Технология:. ...
Закон Ома для участка цепи

Закон Ома для участка цепи

«Закон Ома для участка цепи.». Конспект урока по физике в 8 классе. Янушевская Наталья Анатольевна. ,. . учитель физики. . высшей категории. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:24 ноября 2018
Категория:Физика
Содержит:15 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации