- Законы сохранения

Презентация "Законы сохранения" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20

Презентацию на тему "Законы сохранения" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 20 слайд(ов).

Слайды презентации

Законы Сохранения в Механике. Выполнил Ученик 10 “A” класса Кочетков Николай Проверила Брызгалова О.С
Слайд 1

Законы Сохранения в Механике

Выполнил Ученик 10 “A” класса Кочетков Николай Проверила Брызгалова О.С

Содержание: Закон Сохранения Импульса Закон Сохранения Механической Энергии Работа и Энергия
Слайд 2

Содержание:

Закон Сохранения Импульса Закон Сохранения Механической Энергии Работа и Энергия

Закон Сохранения Импульса. Импульсом называют векторную величину, равную произведению массы тела на ее скорость:
Слайд 3

Закон Сохранения Импульса

Импульсом называют векторную величину, равную произведению массы тела на ее скорость:

При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:
Слайд 4

При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:

Закон сохранения импульса есть следствие второго и третьего законов Ньютона. Рассмотрим пример использования закона сохранения импульса.
Слайд 5

Закон сохранения импульса есть следствие второго и третьего законов Ньютона. Рассмотрим пример использования закона сохранения импульса.

Рассмотрим неупругое столкновение, при котором выполняется закон сохранения импульса. Пусть при абсолютно неупругом столкновении двух тел их скорость будет общей после удара. Ее нужно определить. Напишем векторное уравнение, соответствующее закону сохранения импульса системы:
Слайд 6

Рассмотрим неупругое столкновение, при котором выполняется закон сохранения импульса. Пусть при абсолютно неупругом столкновении двух тел их скорость будет общей после удара. Ее нужно определить. Напишем векторное уравнение, соответствующее закону сохранения импульса системы:

После проецирования векторов на выбранную ось получим скалярное уравнение, которое позволит определить искомую величину .
Слайд 7

После проецирования векторов на выбранную ось получим скалярное уравнение, которое позволит определить искомую величину .

Еще один пример - реактивное движение. Рассмотрим простейший случай этого движения, при котором происходит одномоментное взаимодействие - выстрел из винтовки. До выстрела скорости винтовки и пули были равны нулю. После выстрела они имели различные скорости. Если известна скорость пули, ее масса и ма
Слайд 8

Еще один пример - реактивное движение. Рассмотрим простейший случай этого движения, при котором происходит одномоментное взаимодействие - выстрел из винтовки. До выстрела скорости винтовки и пули были равны нулю. После выстрела они имели различные скорости. Если известна скорость пули, ее масса и масса ружья, можно определить скорость, которую приобрело ружье после выстрела:

Отсюда после проецирования векторов на выбранную ось получим:

2. Закон Сохранения Механической Энергии. Если в замкнутой системе не действуют силы, трения и силы сопротивления, то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной. Рассмотрим пример проявления этого закона. Пусть тело, поднятое над Землей, обладает потенц
Слайд 9

2. Закон Сохранения Механической Энергии

Если в замкнутой системе не действуют силы, трения и силы сопротивления, то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной.

Рассмотрим пример проявления этого закона. Пусть тело, поднятое над Землей, обладает потенциальной энергией Е1 = mgh1 и скоростью v1 направленной вниз. В результате свободного падения тело переместилось в точку с высотой h2 (E2 = mgh2), при этом скорость его возросла от v1 до v2. Следовательно, его кинетическая энергия возросла от

ДО

Запишем уравнение кинематики:
Слайд 10

Запишем уравнение кинематики:

Умножим обе части равенства на mg, получим: После преобразования получим:
Слайд 11

Умножим обе части равенства на mg, получим:

После преобразования получим:

Рассмотрим ограничения, которые были сформулированы в законе сохранения полной механической энергии. Что же происходит с механической энергией, если в системе действует сила трения? В реальных процессах, где действуют силы трения, наблюдается отклонение от закона сохранения механической энергии.
Слайд 12

Рассмотрим ограничения, которые были сформулированы в законе сохранения полной механической энергии. Что же происходит с механической энергией, если в системе действует сила трения? В реальных процессах, где действуют силы трения, наблюдается отклонение от закона сохранения механической энергии.

Например, при падении тела на Землю сначала кинетическая энергия тела возрастает, поскольку увеличивается скорость. Возрастает и сила сопротивления, которая увеличивается с возрастанием скорости. Со временем она будет компенсировать силу тяжести, и в дальнейшем при уменьшении потенциальной энергии о
Слайд 13

Например, при падении тела на Землю сначала кинетическая энергия тела возрастает, поскольку увеличивается скорость. Возрастает и сила сопротивления, которая увеличивается с возрастанием скорости. Со временем она будет компенсировать силу тяжести, и в дальнейшем при уменьшении потенциальной энергии относительно Земли кинетическая энергия не возрастает. Это явление выходит за рамки механики, поскольку работа сил сопротивления приводит к изменению температуры тела. Нагревание тел при действии трения легко обнаружить, потерев ладони друг о друга.

Таким образом, в механике закон сохранения энергии имеет довольно жесткие границы. Изменение тепловой (или внутренней) энергии возникает в результате работы сил трения или сопротивления. Оно равно изменению механической энергии. Таким образом, сумма полной энергии тел при взаимодействии есть величин
Слайд 14

Таким образом, в механике закон сохранения энергии имеет довольно жесткие границы. Изменение тепловой (или внутренней) энергии возникает в результате работы сил трения или сопротивления. Оно равно изменению механической энергии. Таким образом, сумма полной энергии тел при взаимодействии есть величина постоянная (с учетом преобразования механической энергии во внутреннюю). Энергия измеряется в тех же единицах, что и работа. В итоге отметим, что изменить механическую энергию можно только одним способом - совершить работу.

3. Работа и Энергия. Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:
Слайд 15

3. Работа и Энергия

Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением: А = Fs cos a.

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж). 1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия
Слайд 16

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж). 1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность". Мощность равняется отношению совершенной работы ко времени, за которое она выполнена:

Единицей мощности в СИ служит 1 ватт (Вт). 1 Вт - мощность, при которой совершается работа в 1 Дж за 1 секунду.

Величину. для материальной точки называют кинетической энергией. тела. Рассмотрим действие на тело некоторой постоянной силы F. На участке пути s будет произведена работа А. В результате у тела изменится скорость:
Слайд 17

Величину

для материальной точки называют кинетической энергией

тела.

Рассмотрим действие на тело некоторой постоянной силы F. На участке пути s будет произведена работа А. В результате у тела изменится скорость:

Кинетическая энергия - энергия движения, ею обладают все движущиеся тела. Эта величина является относительной, то есть она изменяется в зависимости от выбранной системы отсчета. Кроме этого вида механической энергии, существует и другой ее вид - потенциальная энергия. Рассмотрим систему двух взаимод
Слайд 18

Кинетическая энергия - энергия движения, ею обладают все движущиеся тела. Эта величина является относительной, то есть она изменяется в зависимости от выбранной системы отсчета. Кроме этого вида механической энергии, существует и другой ее вид - потенциальная энергия. Рассмотрим систему двух взаимодействующих тел. Например, тела, поднятого над Землей, и саму Землю.

Работа силы тяжести при перемещении тела на отрезке |h1 - h2| будет равна: Величину mgh в соответствующей точке, которая расположена на высоте h, называют потенциальной энергией тела, находящегося в поле тяжести.
Слайд 19

Работа силы тяжести при перемещении тела на отрезке |h1 - h2| будет равна:

Величину mgh в соответствующей точке, которая расположена на высоте h, называют потенциальной энергией тела, находящегося в поле тяжести.

Из предыдущего уравнения вытекает, что работа не зависит от траектории движения в доле силы тяжести, а определяется лишь изменением высоты. Потенциальная энергия характеризует и другие взаимодействующие тела. Так, потенциальной энергией обладает сжатая пружина: где k - модуль упругости, х - смещение
Слайд 20

Из предыдущего уравнения вытекает, что работа не зависит от траектории движения в доле силы тяжести, а определяется лишь изменением высоты. Потенциальная энергия характеризует и другие взаимодействующие тела. Так, потенциальной энергией обладает сжатая пружина:

где k - модуль упругости, х - смещение от положения равновесия. Потенциальная энергия, как и кинетическая, является величиной относительной, поскольку и высота, и смещение зависят от выбора точки отсчета.

Список похожих презентаций

Энергия. Законы сохранения в механике

Энергия. Законы сохранения в механике

Закон сохранения импульса. В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях ...
"Законы сохранения в механике"

"Законы сохранения в механике"

Импульс тела Модуль Направление. Единица измерения. Закон сохранения импульса. Модуль p=mv Направление p v. Единица измерения кг•м/с. Закон сохранения ...
Законы сохранения

Законы сохранения

F= ma a= v/t F= mv/t F*t=m*v. Всегда ли удобно использовать 2 закон Ньютона для описания движения? Импульс тела. p=m*v Физическая величина, равная ...
Законы сохранения в механике

Законы сохранения в механике

Импульс тела. Импульс тела - векторная величина равная произведению массы тела на его скорость. P=m v P (кг м /с). Примеры реактивного движения: полет ...
Законы сохранения

Законы сохранения

Цель: повторение основных понятий, законов и формул законов сохранения в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Импульс тела. Закон сохранения импульса

Импульс тела. Закон сохранения импульса

Импульс тела. Внутренние силы, действующие в замкнутой системе тел, не могут изменить полный импульс системы. В данном опыте импульс передается от ...
Импульс тела. Закон сохранения импульса

Импульс тела. Закон сохранения импульса

Цели урока для учителя: Обосновать необходимость введения новой физической величины – импульса; Сформировать понятие о замкнутых системах, вывести ...
Законы электролиза

Законы электролиза

СОДЕРЖАНИЕ. Основные понятия Ионная проводимость Вывод формулы Первый закон электролиза Второй закон электролиза Объединённый закон электролиза Применение ...
Закон сохранения заряда

Закон сохранения заряда

Введение. Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической ...
Законы преломления

Законы преломления

Преломление света Примеры явления . При переходе из одной среды в другую световые лучи меняют свое направление. Наблюдается кажущееся изменение размеров ...
Закон сохранения внутренней энергии

Закон сохранения внутренней энергии

Цель урока:. Знать формулировку закона сохранения энергии и уметь применять его для решения задач. Kакой буквой обозначают количество теплоты? A Q ...
Приборы, демонстрирующие закон сохранения механической энергии

Приборы, демонстрирующие закон сохранения механической энергии

Задачи:. изготовить центробежную дорогу и самодвижущуюся тележку; провести опыты с приборами по превращению механической энергии; составить паспорт ...
Закон сохранения импульса тела

Закон сохранения импульса тела

Цели и задачи урока: изучить «импульса тела» с учетом плана изучения физической величины; ознакомиться с формулировкой второго закона Ньютона в импульсной ...
Закон сохранения импульса и системы частиц

Закон сохранения импульса и системы частиц

Законы сохранения. Существуют величины, обладающие важным свойством оставаться в процессе движения механической системы неизменными (т.е. сохраняться): ...
Закон сохранения импульса

Закон сохранения импульса

Пусть механическая система состоит из n точек. Будем нумеровать точки индексом i = 1, … n. Обозначим mi массу i–й точки, - ее скорость, - внешнюю ...
Закон сохранения импульса

Закон сохранения импульса

Цели урока:. Вывести и сформулировать закон сохранения импульса; Рассмотреть примеры применения закона сохранения импульса; Рассмотреть применение ...
Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

закон. Энергия никуда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому. Закон ...
Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

повторить основные понятия кинематики, раскрыть сущность закона сохранения и превращения энергии в механических процессах. Цель:. Задачи урока: Ввести ...
Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

Темы для повторения: Потенциальная энергия. Кинетическая энергия. Полная механическая энергия. Определим имеющиеся у вас знания по рассматриваемым ...
Импульс. Закон сохранения импульса

Импульс. Закон сохранения импульса

Тема урока:. Импульс. Закон сохранения импульса. Импульсом тела называют векторную величину, равную произведению массы тела на его скорость:. Импульс ...

Конспекты

Законы сохранения в механике

Законы сохранения в механике

"Законы сохранения в механике". . Урок физики в 10-м классе. . Тип занятия:. Семинар. Урок комплексного применения знаний. Продолжительность ...
Законы сохранения в механике

Законы сохранения в механике

. Тема урока:. Обобщающее повторение по теме: «Законы сохранения в механике». Цель урока:. Углубить, закрепить и обобщить знания; контроль за ...
Импульс. Энергия. Законы сохранения

Импульс. Энергия. Законы сохранения

Калачёвский муниципальный район, Волгоградской области. МОУ «Октябрьский лицей». Физика. Урок обобщения и закрепления знаний. Тема ...
Законы сохранения в механике

Законы сохранения в механике

Повторительно - обобщающий урок. Решение задач по теме «Законы сохранения в механике». Урок проводится в 10 классе при обобщающем повторении темы ...
Законы сохранения импульса и энергии

Законы сохранения импульса и энергии

МОУ Каргинская средняя общеобразовательная школа. Конспект урока по теме:. «Законы сохранения импульса и энергии ». ( 10 класс). ...
Законы Ньютона, всемирное тяготение, импульс, закон сохранения импульса

Законы Ньютона, всемирное тяготение, импульс, закон сохранения импульса

Урок с применением сингапурской методики обучения. Автор: учитель физики Казаков Виталий Васильевич. МБОУ «Новоузеевская ОШ». . Решение задач. ...
Закон сохранения импульса.Реактивное движение .Освоение космоса

Закон сохранения импульса.Реактивное движение .Освоение космоса

Закон сохранения импульса.Реактивное движение .Освоение космоса. Образовательные цели урока:. . . Актуализация знаний учащихся по теме « Закон ...
Закон сохранения импульса

Закон сохранения импульса

Тема урока: Закон сохранения импульса. Класс: 9 Учитель- Вертелко И.Н. (МБОУ СОШ №27, г.Волжский). Цели урока:. . Образовательные: уч-ся должны ...
Закон сохранения импульса

Закон сохранения импульса

Муниципальное общеобразовательное учреждение «Общеобразовательная (полная) школа№3». Конспект урока по физикев 9 классе. Импульс тела. Понятие ...
Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

Закона сохранения и превращения энергии. Цель урока:. . Раскрыть сущность закона сохранения и превращения энергии в механических процессах. Задачи ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.