Презентация "Биополимеры" (9 класс) по биологии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31

Презентацию на тему "Биополимеры" (9 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Биология. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 31 слайд(ов).

Слайды презентации

Биополимеры. Автор: учитель биологии Егоров Сергей Владимирович (Еласовская средняя общеобразовательная школа Горномарийского района республики Марий Эл).
Слайд 1

Биополимеры

Автор: учитель биологии Егоров Сергей Владимирович (Еласовская средняя общеобразовательная школа Горномарийского района республики Марий Эл).

биополимеры. Нуклеиновые кислоты. белки углеводы липиды Всё!
Слайд 2

биополимеры

Нуклеиновые кислоты

белки углеводы липиды Всё!

строение структура функции аминокислоты. классификация белков. В начало
Слайд 3

строение структура функции аминокислоты

классификация белков

В начало

Строение белков. Белки – это высокомолекулярные азотистые соединения, состоящие из аминокислот, связанных пептидными связями. Элементарный состав белков: С - 50%-55% Н – 6,3%-7,5% О – 21,5%-23,5% N – 15%-18% S - 0%-2,4% Р – 0%-2% Наиболее важным показателем является содержание N в белках. По содержа
Слайд 4

Строение белков

Белки – это высокомолекулярные азотистые соединения, состоящие из аминокислот, связанных пептидными связями. Элементарный состав белков: С - 50%-55% Н – 6,3%-7,5% О – 21,5%-23,5% N – 15%-18% S - 0%-2,4% Р – 0%-2% Наиболее важным показателем является содержание N в белках. По содержанию N можно определить содержание белка в том или ином объекте: %белка = %N x 6,25 Как и любой биополимер белки также состоят из мономеров. Мономером белков является аминокислота. Выделяют примерно 170 аминокислот. Только 20 из них входят в состав белков. Они называются протеиногенными. NH2 – CH – COOH NH2 - аминогруппа СOOH – карбоксильная группа R Аминокислоты отличаются друг от друга только радикалами (R). Аминокислоты можно разделить на 2 группы: 1) заменимые (при отсутствии этих аминокислот они могут быть заменены другой аминокислотой близкой по строению); 2) незаменимые (при отсутствии этих аминокислот они не могут быть заменены другой аминокислотой (триптофан, метионин, лизин и др.). Они синтезируются только в автотрофных организмах.

Аминокислоты. Образование пептидной связи
Слайд 5

Аминокислоты

Образование пептидной связи

первичная вторичная третичная четвертичная Структура белков
Слайд 6

первичная вторичная третичная четвертичная Структура белков

первичная стуртура белков. Последовательное расположение аминокислотных остатков в полипептидной цепи. …- ала – лиз – вал – вал – иле - … Первичная структура белков может быть использована для систематической номенклатуры белков.
Слайд 7

первичная стуртура белков

Последовательное расположение аминокислотных остатков в полипептидной цепи. …- ала – лиз – вал – вал – иле - … Первичная структура белков может быть использована для систематической номенклатуры белков.

вторичная стуктура белков. Происходит пространственное расположение полипептидной цепи. В зависимости от торсионных углов возможно образование 3 основных типов вторичной структуры: 1) α – спираль. Торсионный угол колеблется от 45 до 60 градусов. Нативные (действующие) белки образуют правозакрученную
Слайд 8

вторичная стуктура белков

Происходит пространственное расположение полипептидной цепи. В зависимости от торсионных углов возможно образование 3 основных типов вторичной структуры: 1) α – спираль. Торсионный угол колеблется от 45 до 60 градусов. Нативные (действующие) белки образуют правозакрученную α – спираль. Шаг спирали (один виток) – 0,54 нм, в шаге спирали 3,6 аминокислоты. Диаметр спирали – 0, 5 нм. Стабилизация α – спирали осуществляется за счет водородных связей, возникающих между соседними витками. 2) β – спираль. Торсионный угол от 120 до 130 градусов. Характерная особенность: они образуют складчатые слои. Диаметр спирали – 0,1 нм, шаг спирали – 0,33 нм, в шаге спирали 2,6 аминокислоты. Стабилизация осуществляется за счет межмолекулярных водородных связей между соседними молекулами. 3) β – изгиб. В состав может входить до 4 аминокислотных остатков. Происходит определенная укладка полипептидной цепи. Существуют также другие виды вторичной структуры: π – спираль (отличается от α - спирали линейными группами. И др.

третичная стуктура белков. Происходит общее пространственное расположение белковой молекулы. Третичная структура определяется формой «упаковки» доменов. (домен – это определенные структуры, состоящие из разных типов вторичной структуры белков). В зависимости от соотношения α и β участков различают г
Слайд 9

третичная стуктура белков

Происходит общее пространственное расположение белковой молекулы. Третичная структура определяется формой «упаковки» доменов. (домен – это определенные структуры, состоящие из разных типов вторичной структуры белков). В зависимости от соотношения α и β участков различают глобулярные и фибриллярные третичные структуры белков. Происходит образование структуры называемой глобула. В стабилизации третичной структуры участвуют: 1) дисульфитные ковалентные связи, образующиеся между остатками аминокислоты цистеина. Основная роль в стабилизации; 2) водородные связи; 3) ионная связь; 4) гидрофобное взаимодействие.

четвертичная структура белков. Четвертичную структуру имеют только белки, состоящие из нескольких субъединиц. Это сформировавшаяся часть белковой молекулы, имеющий первичную, вторичную, третичную структуры. В состав белковых молекул обычно входят четное число субъединиц. Это обусловлено тем, что чет
Слайд 10

четвертичная структура белков

Четвертичную структуру имеют только белки, состоящие из нескольких субъединиц. Это сформировавшаяся часть белковой молекулы, имеющий первичную, вторичную, третичную структуры. В состав белковых молекул обычно входят четное число субъединиц. Это обусловлено тем, что четное число субъединиц образует стабильную пространственную конфигурацию белков (тетраэдрическая, кубическая, диэдрическая и др.). Происходит пространственное расположение субъединиц. Примером четвертичной структуры может служить молекула гемоглобина, которая входит в состав эритроцитов (красные клетки крови). В состав гемоглобина входят 4 субъединицы (образуется тетраэдрическая конфигурация молекулы белка). Стабилизация структуры происходит за счет гидрофобных взаимодействий возникающих между субъединицами).

Функции белков. 1) Пластическая (строительная) функция. Белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внеклеточных структур. 2) Каталитическая функция. Все биологические катализаторы – ферменты – вещества белковой природы, они ускоряют химические реакции, протекаю
Слайд 11

Функции белков

1) Пластическая (строительная) функция. Белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внеклеточных структур. 2) Каталитическая функция. Все биологические катализаторы – ферменты – вещества белковой природы, они ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз. 3) Двигательная функция. Обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движения, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц и многоклеточных животных, движение листьев у растений и др. 4) Транспортная функция. Происходит присоединение химических элементов (например, кислорода гемоглобином) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела. Очень много транспортных белков в мембранах клеток, они перенося различные вещества из окружающей среды в клетку. 5) Защитная функция. При поступлении чужеродных белков или микроорганизмов в лейкоцитах образуются особые белки - антитела. Они связываются с чужеродными веществами- антигенами. В результате образуется безвредный, нетоксичный комплекс – антигенантитело, который впоследствии фагоцитируется. 6) Энергетическая функция. Белки могут служить источником энергии. При полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии. Однако, в таком качестве белки используются очень редко. 7) Регуляторная функция. Происходит за счет особых белков – гормонов. Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах. Например, инсулин регулирует уровень глюкозы в крови. 8) Сигнальная функция. В мембрану встроены особые белки, способные изменять свою третичную структуру на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача информации в клетку.

I. По химическому составу выделяют белки: 1) Простые (протеины), состоящие только из аминокислот. 2) сложные (протеиды), кроме аминокислот, в состав белков входят различные добавочные группы (нуклеопротеиды, гликопротеиды, и др.). II. По растворимости в различных растворителях: 1) Альбумины – раство
Слайд 12

I. По химическому составу выделяют белки: 1) Простые (протеины), состоящие только из аминокислот. 2) сложные (протеиды), кроме аминокислот, в состав белков входят различные добавочные группы (нуклеопротеиды, гликопротеиды, и др.)

II. По растворимости в различных растворителях: 1) Альбумины – растворяются в насыщенных растворах минеральных солей; 2) глобулины - растворяются в полунасыщенных растворах минеральных солей; 3) проламины – растворяются в 60%-80% этаноле; 4) глютаимины – растворяются в щелочных растворах и др.

III. По характеру добавочных групп: 1) Металлопротеиды 2) Неметаллопротеиды.

ДНК РНК
Слайд 13

ДНК РНК

Д Н К Структура Функции Строение
Слайд 14

Д Н К Структура Функции Строение

Нуклеиновые кислоты – высокомолекулярные соединения, характеризующиеся определенным элементарным составом и состоящие из нуклеотидов (АГЦО, углевод, остаток фосфорной кислоты. К ним относятся: ДНК, РНК. ДНК – дезоксирибонуклеиновая кислота РНК – рибонуклеиновая кислота Мономером нуклеиновых кислот я
Слайд 15

Нуклеиновые кислоты – высокомолекулярные соединения, характеризующиеся определенным элементарным составом и состоящие из нуклеотидов (АГЦО, углевод, остаток фосфорной кислоты. К ним относятся: ДНК, РНК. ДНК – дезоксирибонуклеиновая кислота РНК – рибонуклеиновая кислота Мономером нуклеиновых кислот является нуклеотид (структурная единица). Нуклеотид: 1) Азотистые гетороциклические основания: А – аденин Т – тимин (ДНК) У – урацил (РНК) Ц – цитозин Г – гуанин 2) углевод – пентоза: ДНК – дезоксирибоза РНК – рибоза 3) остаток фосфорной кислоты

Строение ДНК

Структура ДНК
Слайд 16

Структура ДНК

Происходит последовательное расположение нуклеотидов в полинуклеотидной цепи. В ходе изучения первичной структуры были открыты некоторые закономерности. 1) А + Г = Ц + Т Молекулярная масса пуриновых оснований равна молекулярной массе пиримидиновых оснований. 2) Отношение аденин-тиминовых пар и гуани
Слайд 17

Происходит последовательное расположение нуклеотидов в полинуклеотидной цепи. В ходе изучения первичной структуры были открыты некоторые закономерности. 1) А + Г = Ц + Т Молекулярная масса пуриновых оснований равна молекулярной массе пиримидиновых оснований. 2) Отношение аденин-тиминовых пар и гуанин-цитозиновых пар представляет коэффициент специфичности ДНК. Этот показатель различается у различных видов животных. В ходе изучения первичной структуры было установлено, что 64% участков ДНК составляют уникальную последовательность. Такие участки называются – структурные гены. Структурные гены обеспечивают биосинтез специфических белков. Остальные гены контролируют синтез белка, которые требуются в больших количествах.

Первичная структура ДНК

(Ген – участок молекулы ДНК, содержащий информацию о первичной структуре одного определенного белка.)

Происходит определенное пространственное расположение полинуклеотидной цепи. Характерной особенность вторичной структуры является спирализация полинуклеотидной цепи. У ДНК уровень спирализации достигает до 100%. Вторичная структура была установлена Уотсоном и Криком (получили Нобелевскую премию). В
Слайд 18

Происходит определенное пространственное расположение полинуклеотидной цепи. Характерной особенность вторичной структуры является спирализация полинуклеотидной цепи. У ДНК уровень спирализации достигает до 100%. Вторичная структура была установлена Уотсоном и Криком (получили Нобелевскую премию). В состав молекулы ДНК входят две полинуклеотидные цепи, образуя двойную спираль. Закрутка спирали правая. Основа расположена снаружи (углевод, остаток фосфорной кислоты), а – азотистые основание внутри. АГЦО, между которыми образуются водородные связи образуют комплементарные пары: А – Т Г – Ц Между А и Т образуются две водородные связи. Между Г и Ц – три.

Вторичная структура Д Н К

Выделяют несколько форм вторичной структуры ДНК: 1) В – форма. Расположение АГЦО перпендикулярно к оси молекулы. В шаг спирали входят 16 пар нуклеотидов. Эта форма более стабильная. 2) А – форма. Расположение АГЦО происходит под углом 70 градусов к оси. В шаг спирали входят 11 пар нуклеотидов. Эта форма образуется в ходе репликации и транскрипции. 3) Z – форма. Характеризуется левой закруткой спирали. В шаг спирали входит 12 пар нуклеотидов.

Происходит общее пространственное расположение молекулы ДНК. Благодаря третичной структуре происходит «плотная» упаковка молекулы ДНК в клетках прокариот и хромосомах ядра эукариот. Вещество хромосом называется хроматином и он содержит: ДНК, белки и некоторое количество РНК. Белки, входящие в состав
Слайд 19

Происходит общее пространственное расположение молекулы ДНК. Благодаря третичной структуре происходит «плотная» упаковка молекулы ДНК в клетках прокариот и хромосомах ядра эукариот. Вещество хромосом называется хроматином и он содержит: ДНК, белки и некоторое количество РНК. Белки, входящие в состав белков: гистоны. Различают 5 видов гистонов, отличающиеся содержанием лизина и аргинина. В результате образуются нуклеосомы (размеры молекулы ДНК уменьшаются в20-50 раз). В состав нуклеосомы входит 145-150 нуклеотидов. Происходит скручивание нуклеосом, в результате образуется структура – соленоид (катушка) (размеры уменьшаются в 20-60 раз). Соленоиды образуют фибриллярные структуры (размеры уменьшаются в 200 раз). За счет которых образуются впоследствии хромосомы.

Третичная структура Д Н К

В результате всей упаковки молекула ДНК уменьшается в 100 000 раз.

Происходит общее пространственное расположение отдельных молекул ДНК в хромосоме и взаимное расположение отдельных молекул ДНК и РНК в ходе биосинтеза белка. Четвертичная структура Д Н К
Слайд 20

Происходит общее пространственное расположение отдельных молекул ДНК в хромосоме и взаимное расположение отдельных молекул ДНК и РНК в ходе биосинтеза белка.

Четвертичная структура Д Н К

Значение ДНК (как РНК) в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Стабил
Слайд 21

Значение ДНК (как РНК) в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Стабильность нуклеиновых кислот - важнейшее условие нормальной жизнедеятельности клеток влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя таким образом на жизнеспособность.

Функции Д Н К

Р Н К виды
Слайд 22

Р Н К виды

Строение РНК. РНК, как и ДНК представляет собой биополимер, мономерами которого являются нуклеотиды, состоящие из трех основных компонентов: 1) азотистое основание; 2) углевод – рибозы; 3) остаток фосфорной кислоты. В состав РНК входят те же самые азотистые основания, что и в ДНК. Но вместо тимина (
Слайд 23

Строение РНК

РНК, как и ДНК представляет собой биополимер, мономерами которого являются нуклеотиды, состоящие из трех основных компонентов: 1) азотистое основание; 2) углевод – рибозы; 3) остаток фосфорной кислоты. В состав РНК входят те же самые азотистые основания, что и в ДНК. Но вместо тимина (Т) в состав РНК входит урацил (У). По структуре различают одноцепочечные и двуцепочечные РНК. Двуцепочечные РНК являются хранителем наследственной информации у ряда вирусов. Существует несколько видов одноцепочечных РНК: т-РНК, и-РНК, р-РНК.

р – РНК (рибосомная). Виды Р Н К. т – РНК (транспортная). и – РНК (информационная, матричная)
Слайд 24

р – РНК (рибосомная)

Виды Р Н К

т – РНК (транспортная)

и – РНК (информационная, матричная)

Т – РНК (транспортная). Является самой маленькой РНК. В состав входит 75-90 нуклеотидов. На долю т-РНК приходится 10%-20% от массовой доли РНК. Функция: Перенос активированных аминокислот к месту биосинтеза белка (к рибосомам). Активированная аминокислота: белок + АТФ. Т- РНК характеризуется таким р
Слайд 25

Т – РНК (транспортная)

Является самой маленькой РНК. В состав входит 75-90 нуклеотидов. На долю т-РНК приходится 10%-20% от массовой доли РНК. Функция: Перенос активированных аминокислот к месту биосинтеза белка (к рибосомам). Активированная аминокислота: белок + АТФ. Т- РНК характеризуется таким расположением нуклеотидной цепи в пространстве, которая напоминает форму «клеверного листа».

кодон

Выделяют 3 петли в составе т-РНК: 1) дигидроуридиновая. В ее состав входят 8-12 нуклеотидов и несколько молекул дигидроурацила.

2) псевдоуридиновая. Содержит 7 нуклеотидов и минорное основание – псевдоуридин. Значение петли: обеспечивает взаимодействие с рибосомой.

3) антикодоновая. Содержит до 20 нуклеотидов. В ее состав входит триплет нуклеотидов обеспечивающий «узнавание места» аминокислоты в строящейся белковой молекуле. Для каждой аминокислоте характерны свои кодоны.

Благодаря триплету ЦЦА т-РНК обеспечивает сохранение активности аминокислот.

И - РНК образуется в ходе транскрипции на молекуле ДНК, поэтому первичная структура и-РНК является «отражением» соответствующего гена. Помимо этого в ходе биосинтеза и-РНК образуется достройка молекулы. На долю и-РНК приходится от 2 до 6% массовой доли всех РНК. В состав и-РНК входит 6 участков, каж
Слайд 26

И - РНК образуется в ходе транскрипции на молекуле ДНК, поэтому первичная структура и-РНК является «отражением» соответствующего гена. Помимо этого в ходе биосинтеза и-РНК образуется достройка молекулы. На долю и-РНК приходится от 2 до 6% массовой доли всех РНК. В состав и-РНК входит 6 участков, каждый выполняет определенные функции. 1) КЭП. Роль: стабилизация молекулы и-РНК. 2) Предцистронный участок. Роль: связывание с рибосомой за счет образования водородной связи. 3) Инициирующий участок. Роль: содержится «команда» о начале биосинтеза белка в рибосоме. 4) Цистронный участок. Роль: несет информацию о биосинтезе белка. 5) Обрывающийся триплет. Роль: Содержится «команда» о прекращении биосинтеза белка. 6) Постцистронный участок. Роль: Регулирование количества синтезируемого белка.

Являются основным структурным компонентом рибосом. На долю р-РНК приходится до 75% от общей массы РНК. Взаимодействуя с белками (гистонами) р-РНК образует субъединицы рибосом. Рибосомы состоят из большой и малой субъединиц.
Слайд 27

Являются основным структурным компонентом рибосом. На долю р-РНК приходится до 75% от общей массы РНК. Взаимодействуя с белками (гистонами) р-РНК образует субъединицы рибосом. Рибосомы состоят из большой и малой субъединиц.

Биополимеры Слайд: 28
Слайд 28
Виды углеводов моносахариды дисахариды полисахариды. Простые углеводы. В зависимости от числа атомов углерода в молекуле моносахариды называются триозами – 3 атома, тетрозами – 4 атома, пентозами – 5 атомов, гексозами – 6 атомов. Примеры: глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза. В одной
Слайд 29

Виды углеводов моносахариды дисахариды полисахариды

Простые углеводы. В зависимости от числа атомов углерода в молекуле моносахариды называются триозами – 3 атома, тетрозами – 4 атома, пентозами – 5 атомов, гексозами – 6 атомов. Примеры: глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза.

В одной молекуле объединены 2 моносахарида. Примеры: сахароза, мальтоза, лактоза.

Это сложные углеводы, образованы многими моносахаридами. Почти все – разветвленные полимеры. Примеры: крахмал, гликоген, целлюлоза, хитин.

Функции углеводов. 1) Основная функция – энергетическая. При расщеплении и окислении выделяется энергия, которая обеспечивает жизнедеятельность организма. В процессе окисления 1 г углевода освобождается 17,6 кДж энергии. 2) строительная функция. Целлюлоза входит в состав стенки растительных клеток;
Слайд 30

Функции углеводов

1) Основная функция – энергетическая. При расщеплении и окислении выделяется энергия, которая обеспечивает жизнедеятельность организма. В процессе окисления 1 г углевода освобождается 17,6 кДж энергии. 2) строительная функция. Целлюлоза входит в состав стенки растительных клеток; сложный полисахарид хитин - главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Крахмал – запасное питательное вещество у растений. Гликоген образуется из избытка глюкозы в крови. И т.д.

Липиды присутствуют во всех без исключения клетках, выполняя специфические биологические функции. Жиры – наиболее простые и широко распространенные липиды. Липиды представляют собой соединение, состоящее из: 1) высокомолекулярных жирных кислот 2) трехатомного спирта - глицерина Жиры не растворяются
Слайд 31

Липиды присутствуют во всех без исключения клетках, выполняя специфические биологические функции. Жиры – наиболее простые и широко распространенные липиды. Липиды представляют собой соединение, состоящее из: 1) высокомолекулярных жирных кислот 2) трехатомного спирта - глицерина Жиры не растворяются в воде, они гидрофобны. В клетках есть и другие сложные гидрофобные жироподобные вещество – липоиды. Функции: 1) запасающая. У позвоночных животных примерно половина энергии, потребляемой клетками в состоянии покоя , образуется за счет окисления жиров. 2) энергетическая. В ходе расщепления 1 г жиров до СО2 и Н2О освобождается большое количество энергии – 38,9 кДж. 3) теплоизоляция. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, которая у китов образует слой толщиной до 1 м. 4) регуляторная. Многие гормоны (например, коры надпочечников, половые) являются производными липидов.

Список похожих презентаций

Биополимеры грибного происхождения

Биополимеры грибного происхождения

Биополимеры грибного происхождения Авторы: к.б.н. Пензина Т.А., д.б.н., проф. Боровский Г.Б., к.б.н. Агафонова С.В., к.ф.н. Олейников Д.Н., к.б.н. ...
Биополимеры нуклеиновые кислоты атф

Биополимеры нуклеиновые кислоты атф

Задачи:. Сформировать знания о строении и функциях молекул ДНК, РНК, АТФ, принципе комплиментарности. Развитие логического мышления через сравнение ...
Биополимеры – белки

Биополимеры – белки

Биополимеры – белки. Задачи урока. Обеспечить усвоение учащимися знаний о составе и строении аминокислот, принципе их объединения в полипептидную ...
Белки, их строение, свойства, биологические функции

Белки, их строение, свойства, биологические функции

Цели урока:. Образовательная – познакомить учащихся с белками как высокомолекулярными соединениями, с их основными химическими свойствами на основе ...
Плоды. строение. функции. классификация

Плоды. строение. функции. классификация

Плод-часть растения, развивающаяся из завязи цветка и содержащая семена. Развитие плода. СУХИЕ МНОГОСЕМЯННЫЕ ПЛОДЫ.  Листовка и многолистовка  — разновидность ...
Свойства и функции белков

Свойства и функции белков

Строительная. Белки участвуют в образовании всех мембран и органоидов клетки. белок кератин. Каталитическая. В каждой клетке имеются сотни ферментов. ...
Аминокислоты и белки. строение и свойства

Аминокислоты и белки. строение и свойства

Аминокислоты. Соединение, которое содержит одновременно и кислотную функциональную группу, и аминогруппу, является аминокислотой. . . . Незаменимые ...
Белки-состав, строение, свойства

Белки-состав, строение, свойства

Белки - сложные высокомолекулярные природные соединения, построенные из остатков α-аминокислот. Аминокислоты в белках связаны пептидными связями. ...
Белки и аминокислоты

Белки и аминокислоты

Источники и химическая природа. Животные белки могут быть разделены на два вида: фибриллярные и глобулярные. Фибриллярные белки обнаружены в кожных ...
Аминокислоты и белки

Аминокислоты и белки

БЕЛКИ - высокомолекулярные органические вещества, построенные из остатков 20 аминокислот. Составляют основу жизнедеятельности всех органов Белки необходимы ...
Белки. Свойства и функции

Белки. Свойства и функции

Свойства белков. 1. Белки являются амфотерными соединениями, сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот. Различают ...
Каталитическая функция белков

Каталитическая функция белков

СВЕДЕНИЯ О ФЕРМЕНТЕ ПЕРОКСИДАЗА. В процессе жизнедеятельности в клетках образуется пероксид водорода (Н2О2), который является ядовитым веществом для ...
Зрительный анализатор, его строение и функции

Зрительный анализатор, его строение и функции

Анализаторы. Это системы чувствительных нервных образований, воспринимающих и анализирующих различные внешние и внутренние раздражения. Зрительный ...
Из истории открытия белков

Из истории открытия белков

История открытия белков. Впервые термин белковый (albumineise) применительно ко всем жидкостям животного организма использовал, по аналогии с яичным ...
Дыхание. Строение и функции органов дыхания

Дыхание. Строение и функции органов дыхания

Решение задач. Без пищи и воды животное и человек могут жить несколько дней, а без воздуха никто не может жить дольше 10 минут. - Объясните, почему ...
Обмен белков, жиров и углеводов

Обмен белков, жиров и углеводов

Антуан Франсуа де Фуркруа - основоположник изучения белков. Белки являются наиболее сложными веществами организма и основой протоплазмы клеток. Белки ...
Головной мозг строение и функции

Головной мозг строение и функции

Где расположен спинной мозг? Какое значение имеет спинно-мозговая жидкость? Где она находится? Рассмотрите рис. 77. Найдите спинно-мозговой канал, ...
Головной мозг-строение и функции

Головной мозг-строение и функции

Правда ли что, чем больше мозг, тем умнее и счастливее его владелец? 30 грам 100 грам 400 грам 1400 грам 1 грам. Интересно, есть ли различия по массе ...
Кожа – наружный покровный орган. строение и функции кожи

Кожа – наружный покровный орган. строение и функции кожи

Задачи урока. Раскрыть особенности строения кожи, её функции, их взаимосвязь; углубить знания о гигиене кожи. Развивать навыки самостоятельной работы ...
Конечный мозг. Структура и функции

Конечный мозг. Структура и функции

Вопросы ГИА. Проаналізуйте твердження стосовно позначених на малюнку структур і вкажіть правильні: І - цифра 1 вказує на тіло нейрона, а 2 - на дендрити; ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:26 ноября 2018
Категория:Биология
Содержит:31 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации