- Перпендикуляр и наклонная к прямой

Конспект урока «Перпендикуляр и наклонная к прямой» по геометрии

Автор: Добриян Валентина Васильевна

Название ОУ: Лингвистическая школа- лицей

Должность автора: учитель математики


ТЕМА: Перпендикуляр и наклонная к прямой.


Цели:

а) образовательные – сформировать знания, умения и навыки построения перпендикуляра и наклонной к прямой;

б) развивающие – вырабатывать внимание, логическое мышление, грамотную речь, интерес к предмету;

в) воспитательные – прививать аккуратность, ответственность и уважение к одноклассникам, умение слушать, отстаивать свое мнение.

Основные термины и понятия: наклонная, проекция, среднее пропорциональное между

отрезками.

Планируемые результаты обучения: уч-ся должны знать основные понятия, уметь их

применять при решении задач.

Тип урока: изучение и первичное запоминание новых знаний и способов деятельности

Класс: 8

Ход урока

I. Организационный этап.

II. Актуализация знаний.

  1. Что называют треугольником?

  2. Соотношение между сторонами и углами треугольника.

III. Формирование новых понятий и способов действия

Рис. 1.


1) Рассмотрим прямую m и точку Аm (см. рис. 1 на доске и в тетрадях). Проведем [AC]m, Cm. Как называются: [AC]? Точка С? [перпендикуляр к прямой m; основание перпендикуляра] Сколько перпендикуляров можно провести из данной точки к данной прямой? Вm и В С, [AB] – наклонная к прямой m;

В – основание наклонной;

[BC] – проекция этой наклонной, то есть, отрезок, соединяющий основания перпендикуляра и наклонной.

Сколько наклонных можно провести из точки А к данной прямой? Сравните длину любой и наклонной с длиной перпендикуляра.

Сформулируйте соответствующее свойство наклонной и докажите его. [Если из одной точки к прямой проведены перпендикуляр и наклонная, то длина наклонной больше длины перпендикуляра]


Теорема. Наклонные, проведенные из данной точки к данной прямой равны т. и т. т., когда равны их проекции.

Дано: Аm; [AC]m, Cm. [AB] и [AD] – наклонные к m.

Доказать: |АВ| = |AD| |CВ| = |CD|.

Доказательство. 1) Если |АВ| = |AD|, то [AC] – высота в р/б ВАD, проведенная к основанию, следовательно, [AC] – медиана, то есть, |CВ| = |CD|, ч. т. д.

2) Если |СВ| = |CD|, то [AC] – высота и медиана в ВАD, значит он – р/б, то есть, |АВ| = |АD|, ч. т. д.

IV. Применение. Формирование умений и навыков.

Решить задачи:

1) Найдите |АС| (см. рис. ) []




2) Найдите радиус окружности, описанной около треугольника АВС (см. рис. ) []







3) Между двумя фабричными зданиями устроен покатый желоб для передачи материалов. Расстояние между зданиями равно 10м, а концы желоба расположены на высоте 8м и 4 м над землей. Найдите длину желоба.


4) Из точки, не лежащей на данной прямой, проведен перпендикуляр к прямой, длина которого 24 см, и наклонная длиной 25 см. Найдите периметр образовавшегося треугольника.


5) Из точки, не лежащей на данной прямой, проведены к прямой две наклонные к1 и к2, проекции которых равны 5 см и 8 см соответственно. Какая из наклонных имеет большую длину? Ответ объясните.

Решение:

1. ВС=АВ (по теореме о 300); ВС=1

По теореме Пифагора АС2= АВ2-ВС2→ АС=




2. Треугольник АВС- прямоугольный, равнобедренный АС=СВ=6см, по теореме Пифагора АВ= см, радиус окружности описанной около прямоугольного треугольника равен половине гипотенузы, следовательно R=см.


3.

Прямая соединительная линия 13Прямая соединительная линия 14

Прямая соединительная линия 12Прямая соединительная линия 11В


А 10м К

Прямая соединительная линия 9Прямая соединительная линия 10

4м С 10м Д

Прямая соединительная линия 8


АВСД- прямоугольная трапеция. Проведем высоту АК=СД=10 м. АСКД- прямоугольник, АС=КД= 4 м КВ= 8-4=4 м. Треугольник АКВ- прямоугольный, по теореме Пифагора имеем, АВ=

Прямая соединительная линия 6Прямая соединительная линия 7А

4.




а В С

Прямая соединительная линия 5


т.к АВ треугольник АВС- прямоугольны. По тереме Пифагора ВС==7 см.

Р=25+24+7=56 см.


Прямая соединительная линия 2Прямая соединительная линия 3Прямая соединительная линия 45


Прямая соединительная линия 1

5см 3см


V. Домашнее задание :

1. Из точки, не лежащей на данной прямой, проведены перпендикуляр к прямой и наклонная длиной 26 см. Проекция наклонной на данную прямую равна 10 см. Найдите периметр образовавшегося треугольника.


2. Из точки, не лежащей на данной прямой, проведены к прямой две наклонные к1 и к2, длина которых равны 14 см и 13 см соответственно. Какая из наклонных имеет большую проекцию? Ответ объясните.



VI. Подведение итогов урока : выставление оценок, выявление лучшего, поощрение отдельных учащихся и т. п.


Здесь представлен конспект к уроку на тему «Перпендикуляр и наклонная к прямой», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Геометрия Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Теорема Пифагора. Перпендикуляр и наклонная

Теорема Пифагора. Перпендикуляр и наклонная

Тема: «Теорема Пифагора. Перпендикуляр и наклонная». . Автор – Овденко Галина Александровна. . Тест по теме для 8 класса. . . . . ...
Перпендикулярность прямой и плоскости

Перпендикулярность прямой и плоскости

Урок геометрии по теме "Перпендикулярность прямой и плоскости". 10-й класс. Цели:. закрепить вопросы теории по теме «Перпендикулярность прямой ...
Расположение прямой и плоскости, двух плоскостей в пространстве

Расположение прямой и плоскости, двух плоскостей в пространстве

Геометрия, 9 класс. «Расположение прямой и плоскости, двух плоскостей в пространстве». Цели урока:. рассмотреть возможные случаи взаимного ...
Метод координат на плоскости. Координаты на прямой

Метод координат на плоскости. Координаты на прямой

Муниципальное бюджетное общеобразовательное учреждение. «Вечерняя сменная средняя общеобразовательная школа при ИУ». Конспект урока. Метод координат ...
Взаимное расположение прямой и окружности

Взаимное расположение прямой и окружности

Открытый урок по геометрии 8 класс. Тема: Взаимное расположение прямой и окружности. Учитель: __________________________________Зудина ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:24 апреля 2016
Категория:Геометрия
Поделись с друзьями:
Скачать конспект