» » » Преобразование пространства

Презентация на тему Преобразование пространства

tapinapura
Рейтинг:
Категория: Разные
Дата добавления: 12-10-2019
Содержит:16 слайдов

Презентацию на тему Преобразование пространства можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации : Разные. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 16 слайдов.

скачать презентацию

Слайды презентации

Слайд 1: Презентация Преобразование пространства
Слайд 1

Список группы: Куличкова Анна Ахмирова Кристина Свирин Антон Пронин Илья Кожевникова Наташа Овсепян Роза Козлова Ника Лосев Дмитрий

Преобразование пространства

30.11.2012

Слайд 2: Презентация Преобразование пространства
Слайд 2

Отображение плоскости на себя -это сопоставление каждой точки плоскости какой-то другой точки этой же плоскости, причем любая точка плоскости оказывается сопоставленной некоторой точке плоскости

Отображение плоскости на себя

Слайд 3: Презентация Преобразование пространства
Слайд 3

Пусть каждой точке плоскости ставится в соответствие какая –то точка этой плоскости, причем любая точка плоскости оказывается сопоставленной некоторой точке. В таком случае говорят, что дано отображение плоскости на себя.

Слайд 4: Презентация Преобразование пространства
Слайд 4

Одним из видов отображения плоскости на себя является движение- Под движением пространства понимается отображение пространства на себя, при котором любые две точки и переходят (отображаются) в какие-то точки и так, что . Иными словами, движение пространства --- это отображение пространства на себя, сохраняющее расстояния между точками

Движение пространства

Слайд 5: Презентация Преобразование пространства
Слайд 5

Понятие движения

Отображение плоскости на себя, сохраняющее расстояние, называют – движением.

Слайд 6: Презентация Преобразование пространства
Слайд 6

Свойство 1 (сохранение прямолинейности). При движении три точки, лежащие на прямой, переходят в три точки, лежащие на другой прямой, причем точка, лежащая между двумя другими, переходит в точку, лежащую между образами двух других точек (сохраняется порядок их взаимного расположения). Доказательство. Из планиметрии известно, что три точки A, B, C лежат на прямой тогда и только тогда, когда одна из них, например точка B, лежит между двумя другими - точками A и C, т.е. когда выполняется равенство |AB| + |BC| = |AC|. При движении расстояния сохраняются, а значит, соответствующее равенство выполняется и для точек A’, B’, C’: |A’B’| + |B’C’| = |A’C’|. Таким образом, точки A’, B’, C’ лежат на одной прямой и именно точка B’ лежит между A’ и C’. Из данного свойства следуют также еще несколько свойств:

Свойства движения пространства

А В С A’ С’ В’

Слайд 7: Презентация Преобразование пространства
Слайд 7

Свойство 2. Образом отрезка при движении является отрезок. Свойство 3. Образом прямой при движении является прямая, а образом луча - луч. Свойство 4. При движении образом треугольника является равный ему треугольник, образом плоскости - плоскость, причем параллельные плоскости отображаются на параллельные плоскости, образом полуплоскости - полуплоскость. Свойство 5. При движении образом тетраэдра является тетраэдр, образом пространства - все пространство, образом полупространства - полупространство. Свойство 6. При движении углы сохраняются, т.е. всякий угол отображается на угол того же вида и той же величины. Аналогичное верно и для двугранных углов.

Слайд 8: Презентация Преобразование пространства
Слайд 8
Слайд 9: Презентация Преобразование пространства
Слайд 9

(трансляция) ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.. Параллельным переносом называется такое движение, при котором все точки плоскости перемещаются в одном и том же направлении на одинаковое расстояние

Параллельный перенос- (разные формулировки определения)

Слайд 10: Презентация Преобразование пространства
Слайд 10
Слайд 11: Презентация Преобразование пространства
Слайд 11
Слайд 12: Презентация Преобразование пространства
Слайд 12

Две различные точки и их образы, полученные параллельным переносом, являются вершинами параллелограмма, в котором отрезок, соединяющий две начальные точки образует одну сторону, а отрезок, соединяющий два их образа — противоположную ей сторону. У параллельного переноса нет неподвижных точек, но имеются инвариантные прямые. Совокупность всех параллельных переносов образует группу, которая в евклидовом пространстве является нормальной подгруппой группы движений, а в аффинном ― нормальной подгруппой группы аффинных преобразований

Свойства

Слайд 13: Презентация Преобразование пространства
Слайд 13

Примеры параллельного переноса

Слайд 14: Презентация Преобразование пространства
Слайд 14
Слайд 15: Презентация Преобразование пространства
Слайд 15

Ну и в завершении пару слов об истории развитие понятия параллельного переноса. Понятие параллельного переноса началось с обычного параллелизма на евклидовой плоскости, для которой Фердинанд Миндинг в 1837 г. указал возможность обобщить её на случай поверхности в R 3 с помощью введенного им понятия развертывания кривой γ ∈ S на плоскость R 2 . Это указание Миндинга послужило отправным пунктом для Туллио Леви-Чивиты , который, оформляя аналитически параллельный перенос касательного вектора на поверхности, обнаружил зависимость его только от метрики поверхности и на этой основе обобщил его сразу на случай n-мерного риманова пространства. Дальнейшие обобщения этого понятия связаны с развитием общей теории связностей.

Дополнительная информация

Слайд 16: Презентация Преобразование пространства
Слайд 16

Спасибо за внимание!!!!!!!

Список похожих презентаций