Презентация "Пирамиды" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25

Презентацию на тему "Пирамиды" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 25 слайд(ов).

Слайды презентации

Пирамиды.
Слайд 1

Пирамиды.

Многопрофильная гимназия №79. ОТКРЫТЫЙ УРОК. «ГЕОМЕТРИЧЕСКАЯ ПИРАМИДА И ЕЁ ПРОЕКЦИЯ». Учитель: Волкова Лидия Николаевна. 2009г. Город Алматы
Слайд 3

Многопрофильная гимназия №79

ОТКРЫТЫЙ УРОК

«ГЕОМЕТРИЧЕСКАЯ ПИРАМИДА И ЕЁ ПРОЕКЦИЯ»

Учитель: Волкова Лидия Николаевна

2009г. Город Алматы

Презентацию готовили. Дасиева Роза, Набоко Михаил, Ибрагимова Карина, Егизбаева Айнура, Асанова Эльвира, Ускенбаева Мадия.
Слайд 4

Презентацию готовили

Дасиева Роза, Набоко Михаил, Ибрагимова Карина, Егизбаева Айнура, Асанова Эльвира, Ускенбаева Мадия.

О слове пирамида. Пирамида. Слово «пирамида» в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые знаменитые пирамиды в мире. Другая теория выводит этот термин из греческого слова «пирос» (рожь) – считают, что греки выпекали хлебцы, имевшие форму пирамиды.
Слайд 5

О слове пирамида.

Пирамида. Слово «пирамида» в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые знаменитые пирамиды в мире. Другая теория выводит этот термин из греческого слова «пирос» (рожь) – считают, что греки выпекали хлебцы, имевшие форму пирамиды.

Пирамида- многогранник, у которого основание- многоугольник, боковые грани- треугольники, имеющие общую вершину. Что же такое пирамида?
Слайд 6

Пирамида- многогранник, у которого основание- многоугольник, боковые грани- треугольники, имеющие общую вершину.

Что же такое пирамида?

Пирамиды: Полные Усеченные Неправильная Правильная
Слайд 7

Пирамиды: Полные Усеченные Неправильная Правильная

От чего зависит вид пирамиды? Вид пирамиды зависит от многоугольника, который лежит в основании.
Слайд 8

От чего зависит вид пирамиды?

Вид пирамиды зависит от многоугольника, который лежит в основании.

Проекция пирамиды. Пирамида треугольная
Слайд 9

Проекция пирамиды

Пирамида треугольная

Пирамида – это многогранник, одна из граней которого – произвольный n – угольник A1A2…An, а остальные грани – треугольники с общей вершиной. Этот n – угольник A1A2…An называется основанием пирамиды. Треугольные грани называются боковыми гранями. Общая вершина всех боковых граней называется вершиной
Слайд 12

Пирамида – это многогранник, одна из граней которого – произвольный n – угольник A1A2…An, а остальные грани – треугольники с общей вершиной. Этот n – угольник A1A2…An называется основанием пирамиды. Треугольные грани называются боковыми гранями. Общая вершина всех боковых граней называется вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания называются боковыми рёбрами. Объединение боковых граней пирамиды называется её боковой поверхностью. Перпендикуляр, проведённый из вершины пирамиды к плоскости основания, называется высотой пирамиды.

ABCD – основание S – вершина SO – высота

Пирамида называется правильной, если её основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой. Высота боковой грани правильной пирамиды, проведённая из её вершины, называется апофемой этой пирамиды . Все апофемы равны друг другу. Если
Слайд 13

Пирамида называется правильной, если её основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой. Высота боковой грани правильной пирамиды, проведённая из её вершины, называется апофемой этой пирамиды . Все апофемы равны друг другу. Если в основании пирамиды лежит n-угольник, то пирамида называется n-угольной. Треугольная пирамида называется тетраэдром. Тетраэдр задается четырьмя вершинами; грани тетраэдра – четыре треугольника. Тетраэдр называется правильным, если все его рёбра равны.

Свойства пирамиды. · Все боковые рёбра равны между собой. · Все боковые грани – равные равнобедренные треугольники. · Все двугранные углы при основании равны. · Все плоские углы при вершине равны. · Все плоские углы при основании равны. · Апофемы боковых граней одинаковы по длине. · В любую правильн
Слайд 14

Свойства пирамиды

· Все боковые рёбра равны между собой. · Все боковые грани – равные равнобедренные треугольники. · Все двугранные углы при основании равны. · Все плоские углы при вершине равны. · Все плоские углы при основании равны

· Апофемы боковых граней одинаковы по длине. · В любую правильную пирамиду можно вписать сферу.

Площадь пирамиды. Площадью полной поверхности пирамиды называется сумма площадей всех её граней. Sполн=Sбок+Sосн. Площадь боковой поверхности пирамиды – сумма площадей её боковых граней. Площадь боковой поверхности правильной пирамиды: Sбок.пов.=1/2 * (Pосн* m), где m – апофема, Р – периметр основан
Слайд 15

Площадь пирамиды

Площадью полной поверхности пирамиды называется сумма площадей всех её граней. Sполн=Sбок+Sосн

Площадь боковой поверхности пирамиды – сумма площадей её боковых граней.

Площадь боковой поверхности правильной пирамиды:

Sбок.пов.=1/2 * (Pосн* m), где m – апофема, Р – периметр основания

Обьём пирамиды. Объём пирамиды V=(1/3)*Sосн*h, где S – площадь основания, h – высота пирамиды.
Слайд 16

Обьём пирамиды

Объём пирамиды V=(1/3)*Sосн*h,

где S – площадь основания, h – высота пирамиды.

Усечённая пирамида. Усечённая пирамида – это часть пирамиды, лежащая между основанием и параллельным основанию сечением. Усечённая пирамида является частным случаем пирамиды. Определение.
Слайд 17

Усечённая пирамида

Усечённая пирамида – это часть пирамиды, лежащая между основанием и параллельным основанию сечением. Усечённая пирамида является частным случаем пирамиды.

Определение.

Основания усечённой пирамиды – основание исходной пирамиды и многоугольник, полученный при пересечении её плоскостью (A1A2…An и B1B2…Bn). Отрезки A1B1, A2B2, …, AnBn называются боковыми рёбрами усечённой пирамиды. Перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого
Слайд 18

Основания усечённой пирамиды – основание исходной пирамиды и многоугольник, полученный при пересечении её плоскостью (A1A2…An и B1B2…Bn). Отрезки A1B1, A2B2, …, AnBn называются боковыми рёбрами усечённой пирамиды. Перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого основания, называется высотой усечённой пирамиды. Боковые грани усечённой пирамиды – трапеции. Усечённую пирамиду с основаниями A1A2…An и B1B2…Bn обозначают так: A1A2…AnB1B2…Bn.

Усечённая пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания правильной усечённой пирамиды – правильные многоугольники, а боковые грани – равнобедренные трапеции. Высоты этих трапеций называются апофемами.

A1 A2 A3 An B1 B2 Bn O

Свойства усечённой пирамиды. 1. Боковые рёбра и высота пирамиды делятся секущей плоскостью на пропорциональные отрезки. 2. В сечении получается многоугольник, подобный многоугольнику, лежащему в основании. 3. Площади сечения и основания будут относится между собой, как квадраты их расстояний от верш
Слайд 19

Свойства усечённой пирамиды.

1. Боковые рёбра и высота пирамиды делятся секущей плоскостью на пропорциональные отрезки. 2. В сечении получается многоугольник, подобный многоугольнику, лежащему в основании. 3. Площади сечения и основания будут относится между собой, как квадраты их расстояний от вершины пирамиды.

Площадь поверхности правильной усечённой пирамиды: S=(1/2)*m*(P+P1), где m – апофема, P- периметр оснований, P1- периметр боковой поверхности. Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему: Sбок=1/2*(Рв+Рн)* m, где m – апофема,
Слайд 20

Площадь поверхности правильной усечённой пирамиды: S=(1/2)*m*(P+P1), где m – апофема, P- периметр оснований, P1- периметр боковой поверхности. Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему: Sбок=1/2*(Рв+Рн)* m, где m – апофема, Рв, Рн – периметр верхнего и нижнего оснований

Объём усечённой пирамиды: V=(1/3)*h*(S1+√S1S2+S2), где S1, S2 – площади оснований. Площадь боковой грани: Sбок.гр.=1/2*m*(g+g1), гдеm – апофема, g, g1 – основания боковой грани.

Плоские сечения пирамиды. Сечения пирамиды плоскостями, проходящими через её вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды. ∆SDB – диагональное сечение пирамиды SAB
Слайд 21

Плоские сечения пирамиды

Сечения пирамиды плоскостями, проходящими через её вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды.

∆SDB – диагональное сечение пирамиды SABCD.

Построить сечение четырехугольной пирамиды плоскостью, проходящей через прямую g и точку Е є пл.(SCD). 1. Проведем прямую CD, CD ∩ g ≡ F, F Є (SCD). 2. Проведем прямую FE, получим точки пересечения с ребрами пирамиды: SD ∩ FE ≡ H, SC ∩ FE ≡ G. 3. Построим прямую AD. AD ∩ g ≡ K, K Є (SAD). 4. Через т
Слайд 22

Построить сечение четырехугольной пирамиды плоскостью, проходящей через прямую g и точку Е є пл.(SCD).

1. Проведем прямую CD, CD ∩ g ≡ F, F Є (SCD).

2. Проведем прямую FE, получим точки пересечения с ребрами пирамиды: SD ∩ FE ≡ H, SC ∩ FE ≡ G.

3. Построим прямую AD. AD ∩ g ≡ K, K Є (SAD).

4. Через точки K и H проведем прямую KH. KH ∩ SA ≡ L.

5. Построим прямую AВ, AВ ∩ g ≡ M, M Є (SAB).

6. Через точки M и L строим ML ∩ SB ≡ N.

7. Соединяем точки G, H, L, N. Сечение GHLM построено.

Построение сечения.

Пирамиды Слайд: 20
Слайд 23
Развернутый вид пирамиды
Слайд 24

Развернутый вид пирамиды

ВСЕМ СПАСИБО!!! КОНЕЦ!
Слайд 25

ВСЕМ СПАСИБО!!! КОНЕЦ!

Список похожих презентаций

Пирамиды

Пирамиды

Что такое? Пирамидой ( SABCD ) называется многогранник, который состоит из плоского многоугольника - основания пирамиды ( ABCD ), точка S, не лежащая ...
Пирамиды

Пирамиды

Содержание. Определение пирамиды Площадь пирамиды Правильная пирамида Свойство пирамиды Апофема Теорема о площади боковой поверхности правильной пирамиды ...
Пирамиды

Пирамиды

Пирамида – многогранник, состав – ленный из угольника и треугольни – ков, при этом угольник считают ос – нованием пирамиды, а треугольники – боковыми ...
Занимательная математика

Занимательная математика

На день какого святого наши предки имели обычай отдавать своих детей в учение? Чтобы ответить на вопрос, выполните действия и составьте слово, расположив ...
Занимательная математика

Занимательная математика

Задачи: Закрепление умений и навыков, полученных на уроках математики. Расширение кругозора учащихся. Привитие интереса к математике. Цели урока: ...
Занимательная и информатика и математика для начальной школы

Занимательная и информатика и математика для начальной школы

Постановка задачи: Разработка Интернет ресурса, содержащего комплекты иллюстрированных заданий и филвордов. Особенности разработки: 1. Поиск занимательных ...
Конкурсный урок математика

Конкурсный урок математика

У Ромы не «3», а у Лены не «3» и не «5». Кто какую отметку получил? Проверь себя! 4 5. Запомни! . . Какую из этих схем составила Таня? I способ: 90 ...
Занимательная математика Думай, считай, отгадывай!

Занимательная математика Думай, считай, отгадывай!

г.Санкт-Петербург. Ростральная колонна. телевизионная башня. Исаакиевский собор. Зимний дворец. Нева. а) Высота Ростральных колонн (в метрах). б) ...
Занимательная математика

Занимательная математика

Добрый день! Приветствую вас, мои юные друзья математики. Удачи вам! Ваш друг Математик. Славянская кириллическая десятеричная алфавитная нумерация. ...
«Углы» математика

«Углы» математика

Цель урока:. познакомить учащихся с геометрической фигурой углом, с видами углов (прямой, тупой, острый), сформировать представления о существенных ...
«Своя игра» математика

«Своя игра» математика

Математическая игра-викторина «Своя игра». Конец игры Литература. Задачи – шутки 50. Вопрос: Один господин написал о себе: «Пальцев у меня двадцать ...
«Своя игра» математика

«Своя игра» математика

Условия игры:. Участники сами выбирают темы и вопросы. Вопрос выбирает правильно ответившая команда. 210 – 250 баллов – отметка «5». 110 -200 баллов ...
«Координатная плоскость» математика

«Координатная плоскость» математика

Цели и задачи урока:. 1. Ввести понятие координатной плоскости, уметь определять координаты точек, строить точки по их координатам. 2. Развивать мышление, ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
Занимательная математика

Занимательная математика

Внеклассное мероприятие по математике. Михаил Юрьевич Лермонтов. Автор: Лазарева Ирина Владимировна Учитель математики, г. Москва, ГБОУ ЦСиО «Самбо-70» ...
Занимательная математика

Занимательная математика

Хочу стать фокусником…. Искусство отгадывать числа. Есть фокус по отгадыванию чисел: «фокусник» просит вас складывать, умножать, вычитать задуманное ...
«Устный счёт» математика

«Устный счёт» математика

1- 0,4 3 +2,4 3,2 – 2 3,2- 0,2 12,3 + 3,4 2,04 + 3,6 12 – 1,5 6,2- 2,6 ( 12,4 + 3,67)- 2,67 ( 45,06 + 23,5) – 40 ,06. 0,6 5,4 1,2 3 15,7 5,64 10,5 ...
Занимательная математика для

Занимательная математика для

23 х 25 = 7)42 + 22 = 54 : 5= 8)52 +14 = 119 = 9)62 – 23 = 291 = 10)102 – 92 = 42 = 52 =. I. Немного по теме. II. Задачи без возраста. Задача 1. Четверо ...
Арифметические действия над числами или зачем туристу математика?

Арифметические действия над числами или зачем туристу математика?

27 сентября – день туриста. 34 х 2 = 90 : 30 = 9 + 45 = 11 х 3 = 80 – 19 = 55 : 5 = И У Р Т С 68 3 54 33 61 11. Что лежит в рюкзаке туриста? спички ...
Интересная математика

Интересная математика

Франция Герб Франции Флаг Франции. . Страна граничит с 8 странами: Италией, Испанией, Бельгией, Люксембургом, Германией, Швейцарией, Монако и Андоррой. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:7 сентября 2018
Категория:Математика
Содержит:25 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации