- Классификация органических соединений

Презентация "Классификация органических соединений" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60
Слайд 61
Слайд 62
Слайд 63
Слайд 64
Слайд 65

Презентацию на тему "Классификация органических соединений" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 65 слайд(ов).

Слайды презентации

Общие представления о классах органических веществ. Классификация органических веществ. Представители.
Слайд 1

Общие представления о классах органических веществ.

Классификация органических веществ. Представители.

Классификация. Органические вещества. Углеводороды СхНу. Кислородсодержащие. Азотсодержащие Углеводы предельные непредельные Алканы СnH2n+2 Алкины СnH2n-2 Алкены СnH2n спирты альдегиды кислоты Сложные эфиры амины Амино- кислоты Белки. Моносахара Глюкоза фруктоза. Дисахара сахароза. Полисахара крахма
Слайд 2

Классификация

Органические вещества

Углеводороды СхНу

Кислородсодержащие

Азотсодержащие Углеводы предельные непредельные Алканы СnH2n+2 Алкины СnH2n-2 Алкены СnH2n спирты альдегиды кислоты Сложные эфиры амины Амино- кислоты Белки

Моносахара Глюкоза фруктоза

Дисахара сахароза

Полисахара крахмал

Углеводороды. Предельные (насыщенные, алканы). Алканы - углеводороды, состав которых выражается общей формулой CnH2n+2, где n – число атомов углерода.
Слайд 3

Углеводороды. Предельные (насыщенные, алканы)

Алканы - углеводороды, состав которых выражается общей формулой CnH2n+2, где n – число атомов углерода.

Гомологи – вещества одного класса, отличающиеся друг от друга на одну или несколько групп – СН2 – Гомологический ряд – ряд веществ, расположенных в порядке возрастания относительных молекулярных масс, сходных по строению и свойствам, но отличающиеся друг от друга на одну или несколько групп – СН2 –
Слайд 5

Гомологи – вещества одного класса, отличающиеся друг от друга на одну или несколько групп – СН2 – Гомологический ряд – ряд веществ, расположенных в порядке возрастания относительных молекулярных масс, сходных по строению и свойствам, но отличающиеся друг от друга на одну или несколько групп – СН2 –

Строение алканов
Слайд 6

Строение алканов

Атомные орбитали. Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.
Слайд 8

Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Гибридизация АО - это взаимодействие (смешение) разных по типу, но близких по энергии атомных орбиталей данного атома с образованием гибридных орбиталей одинаковой формы и энергии. Гибридизованные АО при взаимодействии с орбиталями различных типов (s-, р- или гибридными АО) других атомов обычно дают
Слайд 9

Гибридизация АО - это взаимодействие (смешение) разных по типу, но близких по энергии атомных орбиталей данного атома с образованием гибридных орбиталей одинаковой формы и энергии. Гибридизованные АО при взаимодействии с орбиталями различных типов (s-, р- или гибридными АО) других атомов обычно дают s-МО, т.е. образуют s-связи. Такая связь прочнее связи, образованной электронами негибридных АО, за счет более эффективного перекрывания.

сигма-Связь - ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов.
Слайд 11

сигма-Связь - ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов.

Задание. Построить и назвать изомеры для гексана.
Слайд 13

Задание.

Построить и назвать изомеры для гексана.

Алгоритм построения изомеров для алканов. По корню слова строят углеродный скелет (гекса – 6 атомов углерода) С – С – С – С – С – С это первый изомер. Пускают разветвление с одной стороны (кроме последних атомов углерода) С – С – С – С – С С это второй изомер
Слайд 14

Алгоритм построения изомеров для алканов

По корню слова строят углеродный скелет (гекса – 6 атомов углерода) С – С – С – С – С – С это первый изомер. Пускают разветвление с одной стороны (кроме последних атомов углерода) С – С – С – С – С С это второй изомер

Пускают разветвление с другой стороны С – С – С – С С С это третий изомер Можно сделать 2 разветвления у одного атома углерода кроме последних С С – С – С – С С это четвёртый изомер
Слайд 15

Пускают разветвление с другой стороны С – С – С – С С С это третий изомер Можно сделать 2 разветвления у одного атома углерода кроме последних С С – С – С – С С это четвёртый изомер

Доставить атомы водорода с учётом, что углерод 4-хвалентен. СН3 – СН2 – СН2 – СН2 – СН2 – СН3 СН3 – СН2 – СН2 – СН2 – СН3 СН3 СН3 – СН2 – СН2 – СН3 СН3 СН3 СН3 СН3 – СН2 – СН2 – СН3 СН3
Слайд 16

Доставить атомы водорода с учётом, что углерод 4-хвалентен

СН3 – СН2 – СН2 – СН2 – СН2 – СН3 СН3 – СН2 – СН2 – СН2 – СН3 СН3 СН3 – СН2 – СН2 – СН3 СН3 СН3 СН3 СН3 – СН2 – СН2 – СН3 СН3

Порядок построения названия. 1.Выбрать в молекуле главную углеродную цепь. Во-первых, она должна быть самой длинной. Во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная. Например, в молекуле есть 2 цепи с одинаковым числом (7) атомов С (выделен
Слайд 17

Порядок построения названия

1.Выбрать в молекуле главную углеродную цепь. Во-первых, она должна быть самой длинной. Во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная. Например, в молекуле есть 2 цепи с одинаковым числом (7) атомов С (выделены цветом): В случае (а) цепь имеет 1 заместитель, а в (б) – 2. Поэтому следует выбрать вариант (б).

2. Пронумеровать атомы углерода в главной цепи с той стороны, к которой ближе радикалы, или старший заместитель, или кратная связь (в зависимости от класса веществ) Например:
Слайд 18

2. Пронумеровать атомы углерода в главной цепи с той стороны, к которой ближе радикалы, или старший заместитель, или кратная связь (в зависимости от класса веществ) Например:

3. Указать в префиксе (приставке) положение (номер атома углерода) и название радикала, заместителя, функциональной группы в алфавитном порядке. Если есть несколько одинаковых заместителей, то для каждого из них через запятую записывается цифра (местоположение), а их количество указывается приставка
Слайд 19

3. Указать в префиксе (приставке) положение (номер атома углерода) и название радикала, заместителя, функциональной группы в алфавитном порядке. Если есть несколько одинаковых заместителей, то для каждого из них через запятую записывается цифра (местоположение), а их количество указывается приставками ди-2, три-3, тетра-4, пента-5 и т.д. название радикала от количества атомов углерода в нём + суффикс ил Например , 2,2-диметил или 2,3,3,5-тетраметил.

4. Записать корень, соответствующий числу атомов углерода в главной цепи. 5. Если есть двойная связь, то после корня поставить суффикс –ен с указанием положения связи в цепи для тройной связи использовать суффикс –ин. Если кратных связей нет – суффикс -ан
Слайд 20

4. Записать корень, соответствующий числу атомов углерода в главной цепи. 5. Если есть двойная связь, то после корня поставить суффикс –ен с указанием положения связи в цепи для тройной связи использовать суффикс –ин. Если кратных связей нет – суффикс -ан

Таким образом, в названии разветвленного алкана корень+суффикс – название нормального алкана (греч. числительное+суффикс "ан"), приставки – цифры и названия углеводородных радикалов. Пример построения названия:
Слайд 21

Таким образом, в названии разветвленного алкана корень+суффикс – название нормального алкана (греч. числительное+суффикс "ан"), приставки – цифры и названия углеводородных радикалов. Пример построения названия:

Назовём полученные изомеры. н-гексан 2-метилпентан 2,3 – диметилбутан 2,2 - диметилбутан
Слайд 22

Назовём полученные изомеры

н-гексан 2-метилпентан 2,3 – диметилбутан 2,2 - диметилбутан

Химические свойства алканов. Так как все связи насыщены до предела, для алканов характерны реакции Замещение СН4 + Сl2 hv CH3Cl + HCl Разложение (крекинг) C8H18 t C4H10 + C4H8 Отщепление (дегидрирование – отщепление водорода) С2Н6 t C2H4 + H2 Горение 2С2Н6 + 5O2 = 4CO2 + 6H2O
Слайд 23

Химические свойства алканов

Так как все связи насыщены до предела, для алканов характерны реакции Замещение СН4 + Сl2 hv CH3Cl + HCl Разложение (крекинг) C8H18 t C4H10 + C4H8 Отщепление (дегидрирование – отщепление водорода) С2Н6 t C2H4 + H2 Горение 2С2Н6 + 5O2 = 4CO2 + 6H2O

алкены. Алкены (этиленовые углеводороды, олефины) - непредельные алифатические углеводороды, молекулы которых содержат двойную связь. Общая формула ряда алкенов - CnH2n. Простейшие представители: В отличие от предельных углеводородов, алкены содержат двойную связь С=С, которая осуществляется 4-мя об
Слайд 24

алкены

Алкены (этиленовые углеводороды, олефины) - непредельные алифатические углеводороды, молекулы которых содержат двойную связь. Общая формула ряда алкенов - CnH2n. Простейшие представители: В отличие от предельных углеводородов, алкены содержат двойную связь С=С, которая осуществляется 4-мя общими электронами:

пи-Связь. пи-Связь - ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов
Слайд 26

пи-Связь

пи-Связь - ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов

Алкены. Строение
Слайд 27

Алкены. Строение

Номенклатура алкенов. По систематической номенклатуре названия алкенов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на –ен: 2 атома С - этен; 3 атома С - пропен и т.д. Главная цепь выбирается таким образом, чтобы она обязательно включала
Слайд 28

Номенклатура алкенов

По систематической номенклатуре названия алкенов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на –ен: 2 атома С - этен; 3 атома С - пропен и т.д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя двойную связь (т.е. она может быть не самой длинной). Нумерацию углеродных атомов начинают с ближнего к двойной связи конца цепи. Цифра, обозначающая положение двойной связи, ставится обычно после суффикса –ен. Например: Для простейших алкенов применяются также исторически сложившиеся названия:этилен (этен), пропилен (пропен), бутилен (бутен-1), изобутилен (2-метилпропен) и т.п. В номенклатуре различных классов органических соединений наиболее часто используются следующие одновалентные радикалы алкенов:

Изомерия алкенов. Изомерия углеродного скелета (начиная с С4Н8): Изомерия положения двойной связи (начиная с С4Н8): Пространственная изомерия
Слайд 29

Изомерия алкенов

Изомерия углеродного скелета (начиная с С4Н8): Изомерия положения двойной связи (начиная с С4Н8): Пространственная изомерия

Химические свойства алкенов. Характерны реакции присоединения по двойной связи: С галогенами CH2=CH2 + Br2(вод.) СH2 – CH2 + Br:Br CH2 – CH2 дибромэтан. Br Br С водой (гидратация) CH2=CH2 + Н2О кат С2Н5ОН С водородом (гидрирование) CH2=CH2 + Н2 = CH3 – CH3 этан
Слайд 30

Химические свойства алкенов. Характерны реакции присоединения по двойной связи:

С галогенами CH2=CH2 + Br2(вод.) СH2 – CH2 + Br:Br CH2 – CH2 дибромэтан. Br Br С водой (гидратация) CH2=CH2 + Н2О кат С2Н5ОН С водородом (гидрирование) CH2=CH2 + Н2 = CH3 – CH3 этан

Реакция полимеризации. CH2=CH2 + CH2=CH2 + CH2=CH2 + … -СH2 – CH2- + -СH2 – CH2- + -СH2–CH2- -СH2 – CH2-СH2–CH2-СH2–CH2- … Или: nCH2=CH2 (-СH2 – CH2- )n этилен полиэтилен Полимеризация – это …… (см. учебник стр. 208) Мономер – это …… Полимер – это ……
Слайд 31

Реакция полимеризации

CH2=CH2 + CH2=CH2 + CH2=CH2 + … -СH2 – CH2- + -СH2 – CH2- + -СH2–CH2- -СH2 – CH2-СH2–CH2-СH2–CH2- … Или: nCH2=CH2 (-СH2 – CH2- )n этилен полиэтилен Полимеризация – это …… (см. учебник стр. 208) Мономер – это …… Полимер – это ……

Реакции окисления. Полное окисление (горение) С2Н4 + 3O2 = 2CO2 + 2H2O Частичное окисление CH2=CH2 + О + H2O CH2 - CH2 ОН ОН этиленгликоль
Слайд 32

Реакции окисления

Полное окисление (горение) С2Н4 + 3O2 = 2CO2 + 2H2O Частичное окисление CH2=CH2 + О + H2O CH2 - CH2 ОН ОН этиленгликоль

алкины. Алкины (ацетиленовые углеводороды) – непредельные углеводороды, молекулы которых содержат одну тройную связь. Общая формула алкинов СnH2n-2. Простейшие представители: Тройную связь осуществляют 6 общих электронов:
Слайд 33

алкины

Алкины (ацетиленовые углеводороды) – непредельные углеводороды, молекулы которых содержат одну тройную связь. Общая формула алкинов СnH2n-2. Простейшие представители: Тройную связь осуществляют 6 общих электронов:

Номенклатура алкинов. По систематической номенклатуре названия ацетиленовых углеводородов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на –ин: 2 атома С - этин; 3 атома С - пропин и т.д. Главная цепь выбирается таким образом, чтобы она об
Слайд 35

Номенклатура алкинов

По систематической номенклатуре названия ацетиленовых углеводородов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на –ин: 2 атома С - этин; 3 атома С - пропин и т.д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя тройную связь (т.е. она может быть не самой длинной). Нумерацию углеродных атомов начинают с ближнего к тройной связи конца цепи. Цифра, обозначающая положение тройной связи, ставится обычно после суффикса –ин. Например: Для простейших алкенов применяются также исторически сложившиеся названия: ацетилен (этин), аллилен (пропин), кротонилен (бутин-1), валерилен (пентин-1). В номенклатуре различных классов органических соединений наиболее часто используются следующие одновалентные радикалы алкинов:

Химические свойства алкинов. Как и для этиленовых характерны реакции присоединения, окисления. Запишите в тетрадях уравнения реакций: Гидрирования ацетилена Полного окисления ацетилена
Слайд 36

Химические свойства алкинов

Как и для этиленовых характерны реакции присоединения, окисления. Запишите в тетрадях уравнения реакций: Гидрирования ацетилена Полного окисления ацетилена

Функциональная группа – группа атомов, обеспечивающая химические свойства органических веществ
Слайд 37

Функциональная группа – группа атомов, обеспечивающая химические свойства органических веществ

Спирты. Спирты – производные углеводородов, в которых углеводородный радикал связан с одной или несколькими гидроксильными группами. Общая формула спиртов с одной гидроксигруппой R–OH. Простейшие одноатомные спирты Метиловый спирт (метанол) - CH3-OH Этиловый спирт (этанол) - CH3CH2-OH
Слайд 38

Спирты.

Спирты – производные углеводородов, в которых углеводородный радикал связан с одной или несколькими гидроксильными группами. Общая формула спиртов с одной гидроксигруппой R–OH. Простейшие одноатомные спирты Метиловый спирт (метанол) - CH3-OH Этиловый спирт (этанол) - CH3CH2-OH

Многоатомные спирты. Этиленгликоль – двухатомный спирт СН2 – СН2 ОН ОН Как его можно получить? Бесцветная густая жидкость тяжелее воды, имеет сладкий вкус. t кип - +197оС, замерзания – (-13оС) Применяют в качестве антифриза – незамерзающей охлаждающей жидкости.
Слайд 39

Многоатомные спирты

Этиленгликоль – двухатомный спирт СН2 – СН2 ОН ОН Как его можно получить? Бесцветная густая жидкость тяжелее воды, имеет сладкий вкус. t кип - +197оС, замерзания – (-13оС) Применяют в качестве антифриза – незамерзающей охлаждающей жидкости.

Глицерин – трёхатомный спирт СН2 – СН – СН2 ОН ОН ОН Густая сиропообразная бесцветная жидкость сладкого вкуса. Хорошо растворяется в воде. Применяют при выделке кожи и отдельных тканей(предохраняет предметы от высыхания), в парфюмерии и медицине используют только водные растворы, так как безводный г
Слайд 40

Глицерин – трёхатомный спирт СН2 – СН – СН2 ОН ОН ОН Густая сиропообразная бесцветная жидкость сладкого вкуса. Хорошо растворяется в воде. Применяют при выделке кожи и отдельных тканей(предохраняет предметы от высыхания), в парфюмерии и медицине используют только водные растворы, так как безводный глицерин очень гигроскопичен и поэтому обезвоживает кожу.

Химические свойства спиртов обусловлены наличием функциональной группы - ОН. Взаимодействует: С кислотами С активными металлами Горит с выделением углекислого газа и воды (составьте уравнение реакции) Частично окисляется О СН3–СН2–ОН + О СН3–С +Н2О Н
Слайд 41

Химические свойства спиртов обусловлены наличием функциональной группы - ОН

Взаимодействует: С кислотами С активными металлами Горит с выделением углекислого газа и воды (составьте уравнение реакции) Частично окисляется О СН3–СН2–ОН + О СН3–С +Н2О Н

Альдегиды – производные углеводородов, в молекуле которых углеводородный радикал связан с альдегидной группой Общая формула: R–CН=O или. Функциональная группа –СН=О называется альдегидной.
Слайд 42

Альдегиды – производные углеводородов, в молекуле которых углеводородный радикал связан с альдегидной группой Общая формула: R–CН=O или

Функциональная группа –СН=О называется альдегидной.

Карбоновые кислоты. Карбоновые кислоты - органические соединения, содержащие одну или несколько карбоксильных групп –СООН, связанных с углеводородным радикалом. Простейшие карбоновые кислоты Муравьиная кислота (метановая) Уксусная кислота (этановая) Пропионовая кислота (пропановая)
Слайд 43

Карбоновые кислоты

Карбоновые кислоты - органические соединения, содержащие одну или несколько карбоксильных групп –СООН, связанных с углеводородным радикалом. Простейшие карбоновые кислоты Муравьиная кислота (метановая) Уксусная кислота (этановая) Пропионовая кислота (пропановая)

Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса -овая и слова кислота. HCOOH метановая муравьиная CH3COOH этановая уксусная C2H5COOH пропановая пропионовая C3H7COOH бутановая масляная C4H9COOH пентановая валерьяновая C5H11COOH гексановая капрон
Слайд 44

Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса -овая и слова кислота.

HCOOH метановая муравьиная CH3COOH этановая уксусная C2H5COOH пропановая пропионовая C3H7COOH бутановая масляная C4H9COOH пентановая валерьяновая C5H11COOH гексановая капроновая C15H31COOH пентадекановая пальмитиновая C17H35COOH гептадекановая стеариновая Общая формула предельных одноосновных кислот: СnH2n+1COOH

Химические свойства. Карбоксильная группа содержит две функциональные группы - карбонил >С=О и гидроксил -OH, непосредственно связанные друг с другом:
Слайд 45

Химические свойства

Карбоксильная группа содержит две функциональные группы - карбонил >С=О и гидроксил -OH, непосредственно связанные друг с другом:

Характерны реакции с: Со спиртами (реакция этерификации) Продуктом является сложный эфир Составьте уравнение реакции взаимодействия уксусной кислоты и этилового спирта. С металлами Составьте уравнение реакции взаимодействия уксусной кислоты и натрия, назовите продукты реакции (соли уксусной кислоты
Слайд 46

Характерны реакции с:

Со спиртами (реакция этерификации) Продуктом является сложный эфир Составьте уравнение реакции взаимодействия уксусной кислоты и этилового спирта. С металлами Составьте уравнение реакции взаимодействия уксусной кислоты и натрия, назовите продукты реакции (соли уксусной кислоты называются ацетатами)

С солями более слабых карбоновых кислот Составьте уравнение реакции взаимодействия уксусной кислоты и карбоната натрия, назовите продукты реакции Получить одноосновную карбоновую кислоту можно окислением альдегида См. учебник стр. 217
Слайд 47

С солями более слабых карбоновых кислот Составьте уравнение реакции взаимодействия уксусной кислоты и карбоната натрия, назовите продукты реакции Получить одноосновную карбоновую кислоту можно окислением альдегида См. учебник стр. 217

Жиры. Жиры - сложные эфиры глицерина и высших одноатомных карбоновых кислот. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой C15H31COOH, стеариновой C17H35COOH) и ненасыщенных (олеиновой C17H33COOH, линолевой C17H29COOH). Жиры содержатся во всех растениях и животных.
Слайд 48

Жиры.

Жиры - сложные эфиры глицерина и высших одноатомных карбоновых кислот. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой C15H31COOH, стеариновой C17H35COOH) и ненасыщенных (олеиновой C17H33COOH, линолевой C17H29COOH). Жиры содержатся во всех растениях и животных. Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение - рыбий жир). Жиры состоят главным образом из триглицеридов предельных кислот. Растительные жиры - масла (подсолнечное, соевое, хлопковое и др.) - жидкости (исключение - кокосовое масло). В состав триглицеридов масел входят остатки непредельных кислот.

Жидкие жиры превращают в твердые путем реакции гидрирования. При этом водород присоединяется по двойной связи, содержащейся в углеводородном радикале молекул масел. Продукт гидрогенизации масел - твердый жир (искусственное сало, саломас). Маргарин - пищевой жир, состоит из смеси гидрогенизированных
Слайд 49

Жидкие жиры превращают в твердые путем реакции гидрирования. При этом водород присоединяется по двойной связи, содержащейся в углеводородном радикале молекул масел. Продукт гидрогенизации масел - твердый жир (искусственное сало, саломас). Маргарин - пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.). Продуктами щелочного гидролиза жиров являются мыла - соли высших карбоновых кислот и щелочных металлов. (Омыление жиров)

Углеводы (сахара) - органические вещества, состав которых выражается формулой Cx(H2O)y, где x и y > 3. В природе образуются в результате фотосинтеза. НЕКОТОРЫЕ ВАЖНЕЙШИЕ УГЛЕВОДЫ Простые (негидролизующиеся) - Моносахариды: глюкоза С6Н12О6 фруктоза С6Н12О6 рибоза С5Н10О5 Сложные (гидролизующиеся)
Слайд 50

Углеводы (сахара) - органические вещества, состав которых выражается формулой Cx(H2O)y, где x и y > 3.

В природе образуются в результате фотосинтеза. НЕКОТОРЫЕ ВАЖНЕЙШИЕ УГЛЕВОДЫ Простые (негидролизующиеся) - Моносахариды: глюкоза С6Н12О6 фруктоза С6Н12О6 рибоза С5Н10О5 Сложные (гидролизующиеся) - Олигосахариды: сахароза (дисахарид) С12Н22О11 Полисахариды: крахмал (С6Н10О5)n, целлюлоза (С6Н10О5)n

Моносахариды. Моносахариды - гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (альдегидная или кетонная) и несколько гидроксильных.
Слайд 51

Моносахариды

Моносахариды - гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (альдегидная или кетонная) и несколько гидроксильных.

Дисахариды. это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). сахароза
Слайд 52

Дисахариды.

это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). сахароза

Крахмал. В его состав входят: амилоза (внутренняя часть крахмального зерна) - 10-20% амилопектин (оболочка крахмального зерна) - 80-90% Макромолекула амилозы представляет собой спираль, каждый виток которой состоит из 6 звеньев a-глюкозы. Амилопектин состоит из разветвленных макромолекул, молекулярн
Слайд 53

Крахмал

В его состав входят: амилоза (внутренняя часть крахмального зерна) - 10-20% амилопектин (оболочка крахмального зерна) - 80-90% Макромолекула амилозы представляет собой спираль, каждый виток которой состоит из 6 звеньев a-глюкозы. Амилопектин состоит из разветвленных макромолекул, молекулярная масса которых достигает 1 - 6 млн. Подобно амилопектину построен гликоген (животный крахмал).

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH2. Простейший представитель – аминоуксусная кислота H2N-CH2-COOH (глицин) Общая формула: NH2 – CH – COOH R
Слайд 54

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH2.

Простейший представитель – аминоуксусная кислота H2N-CH2-COOH (глицин) Общая формула: NH2 – CH – COOH R

Физические свойства. Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса п
Слайд 55

Физические свойства

Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония: H2N–CH2–COOH + HCl Cl- [H3N–CH2–COOH]+ Как карбоновые кислоты они образуют фун
Слайд 56

Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония: H2N–CH2–COOH + HCl Cl- [H3N–CH2–COOH]+ Как карбоновые кислоты они образуют функциональные производные: а) соли H2N–CH2–COOH + NaOH H2N–CH2–COO- Na+ + H2O б) сложные эфиры

Практическое значение имеет внутримолекулярное взаимодействие функциональных групп e-аминокапроновой кислоты, в результате которого образуется e-капролактам (полупродукт для получения капрона): Межмолекулярное взаимодействие a-аминокислот приводит к образованию пептидов. При взаимодействии двух a-ам
Слайд 57

Практическое значение имеет внутримолекулярное взаимодействие функциональных групп e-аминокапроновой кислоты, в результате которого образуется e-капролактам (полупродукт для получения капрона): Межмолекулярное взаимодействие a-аминокислот приводит к образованию пептидов. При взаимодействии двух a-аминокислот образуется дипептид. (см. учебник стр. 225 - 226)

Классификация органических соединений Слайд: 52
Слайд 58
Белки (полипептиды) - биополимеры, построенные из остатков a-аминокислот, соединённых пептидными (амидными) связями. Функции белков в природе : каталитические (ферменты); регуляторные (гормоны); структурные (кератин шерсти, фиброин шелка, коллаген); двигательные (актин, миозин); транспортные (гемогл
Слайд 59

Белки (полипептиды) - биополимеры, построенные из остатков a-аминокислот, соединённых пептидными (амидными) связями.

Функции белков в природе : каталитические (ферменты); регуляторные (гормоны); структурные (кератин шерсти, фиброин шелка, коллаген); двигательные (актин, миозин); транспортные (гемоглобин); запасные (казеин, яичный альбумин); защитные (иммуноглобулины) и т.д.

Уровни структурной организации белков.
Слайд 60

Уровни структурной организации белков.

Первичная структура. определенная последовательность a-аминокислотных остатков в полипептидной цепи.
Слайд 61

Первичная структура

определенная последовательность a-аминокислотных остатков в полипептидной цепи.

Вторичная структура. конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О. Одна из моделей вторичной структуры - a-спираль.
Слайд 62

Вторичная структура

конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О. Одна из моделей вторичной структуры - a-спираль.

Третичная структура -. форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий.
Слайд 63

Третичная структура -

форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий.

Четвертичная структура -. агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей.
Слайд 64

Четвертичная структура -

агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей.

Список похожих презентаций

Классификация органических соединений

Классификация органических соединений

Классификация соединений по строению углеродной цепи. Ациклические соединения - соединения с открытой (незамкнутой) углеродной цепью. Эти соединения ...
Классификация органических соединений

Классификация органических соединений

II Наличие в молекуле функциональной группы. Виды изомерии. Объект воздействия на реагент. БЛАГОДАРЮ ЗА ВНИМАНИЕ. ...
Классификация органических соединений

Классификация органических соединений

Органическая химия – химия углеводородов и их функциональных производных. органические вещества. углеводороды. функциональные производные углеводородов. ...
Классификация и номенклатура неорганических соединений

Классификация и номенклатура неорганических соединений

ОТВЕТИТЬ НА ПРЕДЛОЖЕННЫЕ ВОПРОСЫ В ПОРЯДКЕ ИХ ПОСТАНОВКИ. Вариант 1 Основания – это… Кислотные оксиды – это … С водой реагирую только оксиды металлов ...
Класса неорганических соединений

Класса неорганических соединений

Результат теста. Верно: 9 Ошибки: 1 Отметка: 4. Время: 0 мин. 33 сек. ещё исправить. Вопрос 1. 1. Образует щелочь при взаимодействии с водой. K2O ...
Генетические связи между важнейшими классами неорганических соединений

Генетические связи между важнейшими классами неорганических соединений

Тема. Генетические связи между важнейшими классами неорганических соединений. А. С. Макаренко: «Теория и практика неотъемлемы». . SO2 HCl H3PO4 H2O ...
Взаимосвязь между классами неорганических соединений

Взаимосвязь между классами неорганических соединений

19.02.2019 Оськина Т.А. Даны схемы превращений. Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. ...
Важнейшие классы неорганических соединений

Важнейшие классы неорганических соединений

Оксид - сложное вещество, состоящее из атомов двух элементов, один из которых - кислород. Э Ме неМе + О2 ЭО-2. Гидроксиды — соединения оксидов химических ...
Важнейшие классы неорганических соединений

Важнейшие классы неорганических соединений

Цели урока:. ВОСпитывающая. Формирование интереса к умению, создание положительной атмосферы, воспитание взаимного уважения между учащимися, для раскрытия ...
Классы неорганических соединений

Классы неорганических соединений

Чем объединены и чем отличаются перечисленные соединения:. Na SO ВаCl Cu(NO ) K PO K S CaSiO 3 4. Cоли – это сложные вещества, состоящие из атомов ...
Классы неорганических соединений

Классы неорганических соединений

1.Назовите известные вам классы неорганических соединений. Классы неорганических веществ. кислоты соли основания оксиды. 2. Из предложенного перечня ...
Теория строения строения органических соединений

Теория строения строения органических соединений

Первые теории строения органических соединений. Органическая химия в начале XIX века: Ученые определяли количественный и качественный состав вещества. ...
Номенклатура органических соединений

Номенклатура органических соединений

Типы номенклатуры органических соединений. Тривиальная (по способу получения). Рационально-функциональная (основа - простейшие соединения). Номенклатура ...
Строение органических соединений А.М. Бутлерова

Строение органических соединений А.М. Бутлерова

Биография А.М.Бутлерова Теория химического строения органических веществ Предпосылки создания теории Теории до Бутлерова Основные положения теории ...
Теория строения органических соединений А. М. Бутлерова

Теория строения органических соединений А. М. Бутлерова

Теория радикалов (30 гг. XIX в Й.Берцелиус, Ю.Либих, Ж.Дюма). В состав органических веществ входят радикалы;. Радикалы всегда постоянны, не подвергаются ...
Классификация органических веществ

Классификация органических веществ

Органические вещества классифицируют:. По типу углеродной цепи По функциональной группе Функциональной называется группа атомов, определяющая наиболее ...
Классификация органических веществ.

Классификация органических веществ.

Астрономы обнаружили органические соединения на расстоянии 220 световых лет от Земли. Классификация органических соединений. ...
Классификация неорганических веществ. Оксиды

Классификация неорганических веществ. Оксиды

ОКСИДЫ. Оксиды- бинарные соединения с кислородом в степени окисления (-2). Общая формула оксидов: ЭmOn где m число атомов элемента Э, а n – число ...
Теория строения органических соединений

Теория строения органических соединений

Например: Сбраживая виноградный сок, получали вино, а при его перегонке - спирт; Нагревая жир с содой, получали мыло; Из цветов извлекали эфирные ...
Теория строения органических соединений А.М. Бутлерова

Теория строения органических соединений А.М. Бутлерова

Теория радикалов (30 гг. XIX в Й.Берцелиус, Ю.Либих, Ж.Дюма). В состав органических веществ входят радикалы;. Радикалы всегда постоянны, не подвергаются ...

Конспекты

Изомерия. Упрощенная классификация органических соединений

Изомерия. Упрощенная классификация органических соединений

Дата_____________ Класс_______________. Тема:. Изомерия. Упрощенная классификация органических соединений. . Цели урока:. дать первоначальное ...
Классификация неорганических соединений Генетическая связь неорганических соединений

Классификация неорганических соединений Генетическая связь неорганических соединений

План учебного занятия № 1. Дата Предмет. химия. группа. Ф.И.О. преподавателя:. Кайырбекова И.А. . . І. Тема занятия:. Классификация неорганических ...
Номенклатура и классификация неорганических соединений

Номенклатура и классификация неорганических соединений

Проверочная работа. по теме «Номенклатура и классификация неорганических соединений». (11 класс). Вариант № 1. 1. . Назовите . соединения:. ...
Повторение и обобщение по теме: «Классификация сложных неорганических соединений

Повторение и обобщение по теме: «Классификация сложных неорганических соединений

Сценарный план урока. «Повторение и обобщение по теме: «Классификация сложных неорганических соединений». Цели и задачи урока:. . . Образовательная:. ...
Важнейшие классы неорганических соединений

Важнейшие классы неорганических соединений

ГБОУ СОШ пос. Сургут муниципального района Сергиевский Самарской области . . ПЛАН-КОНСПЕКТ УРОКА. . по химии в 8 классе Важнейшие ...
Важнейшие классы неорганических соединений

Важнейшие классы неорганических соединений

Урок – игра по теме: «Важнейшие классы неорганических соединений». Класс: 8. ФИО: Тимохина Алёна Владимировна. Должность: Учитель Химии. Место ...
Важнейшие классы неорганических соединений

Важнейшие классы неорганических соединений

МОУ Кинель – Черкасская средняя общеобразовательная школа № 1. «Образовательный центр». Конспект. . открытого урока по химии в 8 ...
Систематика органических соединений

Систематика органических соединений

предельные. . непредельные. . Алканы. . . Циклоалканы. . . Алкены. . этиленовые. . Диеновые. . . Алкины. . ацетиленовые. ...
Теория химического строения органических соединений А. М. Бутлерова

Теория химического строения органических соединений А. М. Бутлерова

МАВ(С)ОУ вечерняя (сменная) общеобразовательная школа № 13 города тюмени. . . Теория химического строения органических соединений А. М. Бутлерова. ...
Классы неорганических соединений

Классы неорганических соединений

Тема: Классы неорганических соединений. Цель:. повторение, . обобщение и систематизация . знаний. Задачи. . . Образовательные:. повторить ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:2 ноября 2018
Категория:Химия
Содержит:65 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации