- АЗОТСОДЕРЖАЩИЕ-ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Презентация "АЗОТСОДЕРЖАЩИЕ-ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60
Слайд 61
Слайд 62
Слайд 63
Слайд 64
Слайд 65
Слайд 66
Слайд 67
Слайд 68
Слайд 69
Слайд 70
Слайд 71
Слайд 72
Слайд 73
Слайд 74
Слайд 75
Слайд 76
Слайд 77
Слайд 78
Слайд 79
Слайд 80
Слайд 81
Слайд 82
Слайд 83
Слайд 84
Слайд 85
Слайд 86
Слайд 87
Слайд 88
Слайд 89
Слайд 90
Слайд 91
Слайд 92
Слайд 93

Презентацию на тему "АЗОТСОДЕРЖАЩИЕ-ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 93 слайд(ов).

Слайды презентации

Химия Для студентов I курса специальностей: 2080165 — экология, 08040165 — товароведение и экспертиза товаров, 260800 — технология, конструирование изделий и материалы легкой промышленности ИИИБС, кафедра ЭПП к.х.н., доцент А. Н. Саверченко
Слайд 1

Химия Для студентов I курса специальностей: 2080165 — экология, 08040165 — товароведение и экспертиза товаров, 260800 — технология, конструирование изделий и материалы легкой промышленности ИИИБС, кафедра ЭПП к.х.н., доцент А. Н. Саверченко

АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ. К азотсодержащим органическим соединениям относят многочисленные органические соединения, как природного происхождения, так и синтетические, в молекулах которых содержатся атомы азота. К ним относятся белковые вещества, многие важнейшие физиологически активные
Слайд 2

АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

К азотсодержащим органическим соединениям относят многочисленные органические соединения, как природного происхождения, так и синтетические, в молекулах которых содержатся атомы азота. К ним относятся белковые вещества, многие важнейшие физиологически активные соединения, полимерные материалы, красители, лекарственные препараты.

Студент должен: знать стоение, номенклатуру, свойства, способы получения и применение азотсодержащих производных углеводородов умень составлять названия и химические уравнения реакций азотсодержащих производных углеводородов
Слайд 3

Студент должен: знать стоение, номенклатуру, свойства, способы получения и применение азотсодержащих производных углеводородов умень составлять названия и химические уравнения реакций азотсодержащих производных углеводородов

В настоящем лабораторном практикуме рассмотрены те азотсодержащие органические соединения, в молекулах которых атом азота непосредственно связан с атомом углерода: амины, аминокислоты, белковые вещества, диазо- и азосоединения.
Слайд 4

В настоящем лабораторном практикуме рассмотрены те азотсодержащие органические соединения, в молекулах которых атом азота непосредственно связан с атомом углерода: амины, аминокислоты, белковые вещества, диазо- и азосоединения.

Амины алифатического ряда. Амины - органические соединения, которые можно рассматривать как производные углеводородов, образованные в результате замещения атомов водорода в углеводородной молекуле остатками аммиака (аминогруппами). Амины рассматривают и как производные аммиака, в котором атомы водор
Слайд 5

Амины алифатического ряда

Амины - органические соединения, которые можно рассматривать как производные углеводородов, образованные в результате замещения атомов водорода в углеводородной молекуле остатками аммиака (аминогруппами). Амины рассматривают и как производные аммиака, в котором атомы водорода замещены углеводородными радикалами R – H NH3 R – NH2 углеводород аммиак амин

Так как в аммиаке радикалами могут быть последовательно замещены все водородные атомы, существуют три группы аминов. Амины, в которых азот соединен с одним радикалом, называются первичными, с двумя радикалами – вторичными и с тремя радикалами – третичными R R | | R – NH2 R – NH R – N – R первичный в
Слайд 6

Так как в аммиаке радикалами могут быть последовательно замещены все водородные атомы, существуют три группы аминов. Амины, в которых азот соединен с одним радикалом, называются первичными, с двумя радикалами – вторичными и с тремя радикалами – третичными R R | | R – NH2 R – NH R – N – R первичный вторичный третичный амин амин амин

Амины могут содержать одну, две и более аминогрупп, соответственно различают моноамины, диамины и т.д. Следует иметь в виду, что диамины с двумя аминогруппами при одном углеродном атоме не существуют. Поэтому простейшим диамином является этилендиамин, содержащий две аминогруппы при различных углерод
Слайд 7

Амины могут содержать одну, две и более аминогрупп, соответственно различают моноамины, диамины и т.д. Следует иметь в виду, что диамины с двумя аминогруппами при одном углеродном атоме не существуют. Поэтому простейшим диамином является этилендиамин, содержащий две аминогруппы при различных углеродных атомах: NH2 – CH2 – CH2 – NH2 этилендиамин (1,2 - этандиамин)

С аминами тесно связаны органические вещества, являющиеся производными аммониевых соединений. Производные гидроксида аммония, содержащие в комплексном аммониевом катионе вместо атомов водорода радикалы, называют гидроксидами замещенного аммония; соединения, содержащие ион четырехзамещенного аммония,
Слайд 8

С аминами тесно связаны органические вещества, являющиеся производными аммониевых соединений. Производные гидроксида аммония, содержащие в комплексном аммониевом катионе вместо атомов водорода радикалы, называют гидроксидами замещенного аммония; соединения, содержащие ион четырехзамещенного аммония, в котором с азотом вместо всех четырех атомов водорода связаны четыре радикала, называют четвертичными аммониевыми основаниями:

[NH4]+ OH- гидроксид аммония гидроксид четырехзамещенного аммония (четвертичное аммониевое основание)
Слайд 9

[NH4]+ OH- гидроксид аммония гидроксид четырехзамещенного аммония (четвертичное аммониевое основание)

При замещении радикалами атомов водорода в аммониевых солях образуются соли замещенного аммония, например: [NH4] Cl хлорид аммония хлорид четырехзамещенного (соль аммония) аммония (соль четвертичного аммониевого основания)
Слайд 10

При замещении радикалами атомов водорода в аммониевых солях образуются соли замещенного аммония, например: [NH4] Cl хлорид аммония хлорид четырехзамещенного (соль аммония) аммония (соль четвертичного аммониевого основания)

Номенклатура аминов. По правилам Международной номенклатуры, если аминогруппа в соединении является главной, наличие ее обозначают окончанием – амин; когда имеется несколько таких групп, используют окончание с греческими числительными –диамин, триамин и т.д.
Слайд 11

Номенклатура аминов

По правилам Международной номенклатуры, если аминогруппа в соединении является главной, наличие ее обозначают окончанием – амин; когда имеется несколько таких групп, используют окончание с греческими числительными –диамин, триамин и т.д.

Для наименования первичных аминов или диаминов с первичными аминогруппами указанные окончания добавляются к названиям соответствующих одновалентных или двухвалентных радикалов: CH3 | CH3 – NH2 CH3 – CH – NH2 метиламин изопропиламин CH2 – CH2 – CH2 – CH2 | | NH2 NH2 тетраметилендиамин
Слайд 12

Для наименования первичных аминов или диаминов с первичными аминогруппами указанные окончания добавляются к названиям соответствующих одновалентных или двухвалентных радикалов: CH3 | CH3 – NH2 CH3 – CH – NH2 метиламин изопропиламин CH2 – CH2 – CH2 – CH2 | | NH2 NH2 тетраметилендиамин

Названия аминов могут быть произведены и от заместительных названий соответствующих углеводородов, тогда цифрами указывают атомы углерода главной цепи, связанные с аминогруппой. Например CH3 5 4 3 2 1 CH3 CH CH2 CH CH3 NH2 4-метил-2-пентанамин
Слайд 13

Названия аминов могут быть произведены и от заместительных названий соответствующих углеводородов, тогда цифрами указывают атомы углерода главной цепи, связанные с аминогруппой. Например CH3 5 4 3 2 1 CH3 CH CH2 CH CH3 NH2 4-метил-2-пентанамин

Названия вторичных и третичных аминов с одинаковыми радикалами образуются из названий этих радикалов и указывающих их число греческих числительных. Например: CH2 CH3 СH3 NH CH3 CH3 CH2 N CH2 CH3 диметиламин триэтиламин
Слайд 14

Названия вторичных и третичных аминов с одинаковыми радикалами образуются из названий этих радикалов и указывающих их число греческих числительных. Например: CH2 CH3 СH3 NH CH3 CH3 CH2 N CH2 CH3 диметиламин триэтиламин

Название соединений, содержащих ион замещенного аммония составляют из наименований радикалов: CH3 CH3 CH3 N+ CH3 OH- CH3 N+ CH3 Cl- CH3 C2H5 гидроксид хлорид тетраметиламмония диметилэтиламмония
Слайд 15

Название соединений, содержащих ион замещенного аммония составляют из наименований радикалов: CH3 CH3 CH3 N+ CH3 OH- CH3 N+ CH3 Cl- CH3 C2H5 гидроксид хлорид тетраметиламмония диметилэтиламмония

Химические свойства. Как производные аммиака амины проявляют основные свойства и являются органическими основаниями. Подобно аммиаку амины с водой образуют катионы замещенного аммония и гидроксильные анионы: + CH3 NH2 + HOH CH3 NH3 + OH ¯ метиламин ион метиламина
Слайд 16

Химические свойства

Как производные аммиака амины проявляют основные свойства и являются органическими основаниями. Подобно аммиаку амины с водой образуют катионы замещенного аммония и гидроксильные анионы: + CH3 NH2 + HOH CH3 NH3 + OH ¯ метиламин ион метиламина

Водные растворы аминов можно представить как растворы гидроксидов замещенного аммония; в случае метиламина – гидроксида метиламмония CH3 NH3 OH . Они имеют щелочную реакцию и окрашивают лакмус в синий цвет.
Слайд 17

Водные растворы аминов можно представить как растворы гидроксидов замещенного аммония; в случае метиламина – гидроксида метиламмония CH3 NH3 OH . Они имеют щелочную реакцию и окрашивают лакмус в синий цвет.

Под влиянием простейших алкильных радикалов основные свойства аминогруппы увеличиваются, поэтому амины жирного ряда являются более сильными основаниями, чем аммиак. Особенно сильные основные свойства проявляют четвертичные аммониевые основания.
Слайд 18

Под влиянием простейших алкильных радикалов основные свойства аминогруппы увеличиваются, поэтому амины жирного ряда являются более сильными основаниями, чем аммиак. Особенно сильные основные свойства проявляют четвертичные аммониевые основания.

Увеличение основных свойств аминогруппы в аминах сравнительно с аммиаком объясняется электронодонорными свойствами алкильных радикалов, их способностью отталкивать электроны связей, соединяющих их с другими атомами или группами: ●● ●● CH3 N H CH3 N H H CH3 метиламин диметиламин
Слайд 19

Увеличение основных свойств аминогруппы в аминах сравнительно с аммиаком объясняется электронодонорными свойствами алкильных радикалов, их способностью отталкивать электроны связей, соединяющих их с другими атомами или группами: ●● ●● CH3 N H CH3 N H H CH3 метиламин диметиламин

Алкилы увеличивают общую электронную плотность атома азота, несущего неподеленную электронную пару, и, следовательно, его способность присоединять протон. Как основание аммиак с кислотами дает соли аммония. Аналогично проявляются основные свойства аминов. Например:
Слайд 20

Алкилы увеличивают общую электронную плотность атома азота, несущего неподеленную электронную пару, и, следовательно, его способность присоединять протон. Как основание аммиак с кислотами дает соли аммония. Аналогично проявляются основные свойства аминов. Например:

CH3 NH2 + HCl CH3 NH3 Cl метиламин хлорид метиламмония CH3 NH2 + H2SO4 CH3 NH3 SO4 2 сульфат метиламмония
Слайд 21

CH3 NH2 + HCl CH3 NH3 Cl метиламин хлорид метиламмония CH3 NH2 + H2SO4 CH3 NH3 SO4 2 сульфат метиламмония

Едкие щелочи, как более сильные основания, вытесняют амины из их солей. CH3 NH3 Cl + NaOH CH3 NH2 + H2O + NaCl метиламин Реакция ускоряется при нагревании.
Слайд 22

Едкие щелочи, как более сильные основания, вытесняют амины из их солей. CH3 NH3 Cl + NaOH CH3 NH2 + H2O + NaCl метиламин Реакция ускоряется при нагревании.

Реакции аминов с азотистой кислотой. При действии азотистой кислоты (HNO2) на первичные амины выделяются газообразный азот и вода и образуется спирт: R N H2 + O = N OH R OH + N2 + H2O первичный азотистая спирт амин кислота Например: CH3 N H2 + O = N OH CH3OH + N2 +H2O метиламин метанол
Слайд 23

Реакции аминов с азотистой кислотой

При действии азотистой кислоты (HNO2) на первичные амины выделяются газообразный азот и вода и образуется спирт: R N H2 + O = N OH R OH + N2 + H2O первичный азотистая спирт амин кислота Например: CH3 N H2 + O = N OH CH3OH + N2 +H2O метиламин метанол

Вторичные амины при действии на них азотистой кислоты образуют нитрозамины: R R N H + HO N = О N = N = О + H2O R R вторичный азотистая нитрозамин амин кислота
Слайд 24

Вторичные амины при действии на них азотистой кислоты образуют нитрозамины: R R N H + HO N = О N = N = О + H2O R R вторичный азотистая нитрозамин амин кислота

Например: CH3 CH3 N H + HO N = О N N = О +H2O CH3 CH3 диметиламин диметилнитрозамин Третичные амины, в которых при азоте нет водорода, не реагируют с азотистой кислотой.
Слайд 25

Например: CH3 CH3 N H + HO N = О N N = О +H2O CH3 CH3 диметиламин диметилнитрозамин Третичные амины, в которых при азоте нет водорода, не реагируют с азотистой кислотой.

Аминокислоты. Аминокислотами называют карбоновые кислоты, в углеводородных радикалах которых один или несколько атомов водорода замещены остатками аммиака - аминогруппами. Чаще всего атомы водорода замещаются на первичные аминогруппы. Тогда в общем виде строение аминокислот выражается формулой H2N R
Слайд 26

Аминокислоты

Аминокислотами называют карбоновые кислоты, в углеводородных радикалах которых один или несколько атомов водорода замещены остатками аммиака - аминогруппами. Чаще всего атомы водорода замещаются на первичные аминогруппы. Тогда в общем виде строение аминокислот выражается формулой H2N R COOH. Поскольку в аминокислотах находятся различные функциональные группы, они являются соединениями со смешанными функциями.

Строение, изомерия и номенкулатура. Изомерия аминокислот определяется положением аминогрупп по отношению к карбоксильным группам; строением углеродного скелета и наличием асимметрических углеродных атомов. Названия аминокислот, поскольку в них главной функциональной группой является карбоксил, вывод
Слайд 27

Строение, изомерия и номенкулатура

Изомерия аминокислот определяется положением аминогрупп по отношению к карбоксильным группам; строением углеродного скелета и наличием асимметрических углеродных атомов. Названия аминокислот, поскольку в них главной функциональной группой является карбоксил, выводят из тривиальных или систематических названий соответствующих по углеродному скелету незамещенных кислот, добавляя к ним приставку амино-; положение аминогруппы по отношению к карбоксилу обозначают либо буквами греческого алфавита, либо цифрами. Для аминокислот общеприняты тривиальные названия.

Простейшей является аминоуксусная (аминоэтановая) кислота; иначе ее называют глицином или гликоколом: CH3COOH H2N CH2 COOH уксусная аминоуксусная кислота кислота (глицин, гликокол)
Слайд 28

Простейшей является аминоуксусная (аминоэтановая) кислота; иначе ее называют глицином или гликоколом: CH3COOH H2N CH2 COOH уксусная аминоуксусная кислота кислота (глицин, гликокол)

Вследствие наличия в молекулах аминокислот одновременно карбоксильных и аминогрупп они могут реагировать как кислоты и как амины. Некоторые же свойства аминокислот являются результатом взаимного влияния и взаимодействия карбоксильных групп и аминогрупп.
Слайд 29

Вследствие наличия в молекулах аминокислот одновременно карбоксильных и аминогрупп они могут реагировать как кислоты и как амины. Некоторые же свойства аминокислот являются результатом взаимного влияния и взаимодействия карбоксильных групп и аминогрупп.

Амфотерность аминокислот. Аминокислоты – амфотерные соединения, образующие соли как с кислотами, так и с основаниями. В первом случае в реакции участвует аминогруппа, во втором – карбоксильная группа. NH2 CH2 COOH + HCl N+ H3 CH2COOH Cl ¯ глицин хлороводородная соль глицина
Слайд 30

Амфотерность аминокислот

Аминокислоты – амфотерные соединения, образующие соли как с кислотами, так и с основаниями. В первом случае в реакции участвует аминогруппа, во втором – карбоксильная группа. NH2 CH2 COOH + HCl N+ H3 CH2COOH Cl ¯ глицин хлороводородная соль глицина

NH2 CH2 COOH + NaOH NH2 CH2 COONa + H2O натриевая соль глицина
Слайд 31

NH2 CH2 COOH + NaOH NH2 CH2 COONa + H2O натриевая соль глицина

Кислотная и основная группы внутри молекул аминокислот взаимодействуют друг с другом, благодаря этому молекулы аминокислот представляют собой биполярные ионы. Поэтому, например, водные растворы одноосновных моноаминокислот нейтральны. Для глицина это можно представить следующей схемой:
Слайд 32

Кислотная и основная группы внутри молекул аминокислот взаимодействуют друг с другом, благодаря этому молекулы аминокислот представляют собой биполярные ионы. Поэтому, например, водные растворы одноосновных моноаминокислот нейтральны. Для глицина это можно представить следующей схемой:

CH2 COOH CH2 COO ¯ NH2 +NH3 глицин внутренняя соль глицина Характерной особенностью аминокислот является способность к образованию внутрикомплексных солей с тяжелыми металлами.
Слайд 33

CH2 COOH CH2 COO ¯ NH2 +NH3 глицин внутренняя соль глицина Характерной особенностью аминокислот является способность к образованию внутрикомплексных солей с тяжелыми металлами.

Реакции аминогрупп в аминокислотах. Аминокислоты с первичными аминогруппами реагируют с азотистой кислотой подобно первичным аминам. СH3 CH COOH + HO N = O NH2 α-аминопропионовая кислота CH3 CH COOH+ N2 + H2O OH α-гидроксипропионовая кислота
Слайд 34

Реакции аминогрупп в аминокислотах

Аминокислоты с первичными аминогруппами реагируют с азотистой кислотой подобно первичным аминам. СH3 CH COOH + HO N = O NH2 α-аминопропионовая кислота CH3 CH COOH+ N2 + H2O OH α-гидроксипропионовая кислота

Функциональные производные аминокислот. Подобно незамещенным карбоновым кислотам, аминокислоты за счет карбоксильной группы образуют различные производные: сложные эфиры, галогенангидриды, амиды и т.п. Например: O O O C OH C OC2H5 C NH2 CH2 NH2 CH2 NH2 CH2 NH2 глицин сложный эфир амид глицина глицин
Слайд 35

Функциональные производные аминокислот

Подобно незамещенным карбоновым кислотам, аминокислоты за счет карбоксильной группы образуют различные производные: сложные эфиры, галогенангидриды, амиды и т.п. Например: O O O C OH C OC2H5 C NH2 CH2 NH2 CH2 NH2 CH2 NH2 глицин сложный эфир амид глицина глицина

Отличительные свойства α, β, γ и δ-аминокислот. Различное взаимное расположение аминогрупп и карбоксильных групп в молекулах аминокислот придает последним некоторые отличительные свойства. Например, молекулы α-аминокислоты в особых условиях могут реагировать друг с другом, образуя ациклические соеди
Слайд 36

Отличительные свойства α, β, γ и δ-аминокислот

Различное взаимное расположение аминогрупп и карбоксильных групп в молекулах аминокислот придает последним некоторые отличительные свойства. Например, молекулы α-аминокислоты в особых условиях могут реагировать друг с другом, образуя ациклические соединения типа амидов, называемые пептидами. Из двух молекул α-аминокислоты образуются дипептиды. Например:

H2N CH C OH + H NH CH C OH CH3 O CH3 O аланин аланин H2N CH C NH CH C OH + H2O CH3 O CH3 O дипептид
Слайд 37

H2N CH C OH + H NH CH C OH CH3 O CH3 O аланин аланин H2N CH C NH CH C OH + H2O CH3 O CH3 O дипептид

Таким же путем из многих аминокислотных молекул получают полипептиды. Образование полипептидов из α-аминокислот лежит в основе синтеза белковых веществ в организмах.
Слайд 38

Таким же путем из многих аминокислотных молекул получают полипептиды. Образование полипептидов из α-аминокислот лежит в основе синтеза белковых веществ в организмах.

Белковые вещества. Белковые вещества, или белки, представляют собой природные высокомолекулярные азотсодержащие органические соединения, очень сложные молекулы которых построены из остатков α-аминокислот. Значение белков в природе исключительно велико, так как эти вещества играют первостепенную роль
Слайд 39

Белковые вещества.

Белковые вещества, или белки, представляют собой природные высокомолекулярные азотсодержащие органические соединения, очень сложные молекулы которых построены из остатков α-аминокислот. Значение белков в природе исключительно велико, так как эти вещества играют первостепенную роль во всех явлениях жизни. Белки широко распространены в природе. Особенно много их содержат организмы животных и человека. Огромное значении белки имеют и для жизнедеятельности растительных организмов.

В природе существует огромное множество различных белков. Они различаются по молекулярной массе, свойствам и той роли, которую играют в различных природных процессах. Очень часто белковые вещества представляют собой сложные смеси различных белков. Элементный состав белков непостоянен. Все они содерж
Слайд 40

В природе существует огромное множество различных белков. Они различаются по молекулярной массе, свойствам и той роли, которую играют в различных природных процессах. Очень часто белковые вещества представляют собой сложные смеси различных белков. Элементный состав белков непостоянен. Все они содержат углерод (50-55%), водород (6,5-7,3%), кислород (21,5-23,5) и азот (15-18%), в состав многих входит сера (0,3-2,5%), некоторые содержат фосфор, железо, йод, медь.

При нагревании с кислотами или со щелочами, а также при обычных температурах под действием специальных ферментов белки расщепляются, подвергаясь гидролизу, т.е. разложению водой. Главными продуктами полного гидролиза белков являются смеси α-аминокислот. Из белковых гидролизатов выделено свыше 20 раз
Слайд 41

При нагревании с кислотами или со щелочами, а также при обычных температурах под действием специальных ферментов белки расщепляются, подвергаясь гидролизу, т.е. разложению водой. Главными продуктами полного гидролиза белков являются смеси α-аминокислот. Из белковых гидролизатов выделено свыше 20 различных α-аминокислот. Именно α-аминокислоты, входящие в состав белков, определяют их пищевую ценность.

Каждый организм из аминокислот, получаемых с белками пищи, синтезирует свои, необходимые ему белки. При этом из 20 белков α-аминокислот наиболее важны восемь, которые называют незаменимыми аминокислотами; они поступают только с пищей и не могут образовываться в организме из остальных аминокислот или
Слайд 42

Каждый организм из аминокислот, получаемых с белками пищи, синтезирует свои, необходимые ему белки. При этом из 20 белков α-аминокислот наиболее важны восемь, которые называют незаменимыми аминокислотами; они поступают только с пищей и не могут образовываться в организме из остальных аминокислот или из других азотистых соединений. Остальные α-аминокислоты белков называются заменимыми – отсутствие или недостаток этих кислот в пище организм компенсирует, синтезируя их из других аминокислот или из иных азотистых соединений.

Строение белков. Различные α-аминокислоты, образуя белки, соединяются за счет аминогрупп и карбоксильных групп при помощи группировки CO NH , названной пептидной связью. В белковых молекулах имеются полипептидные цепи. Если строение α-аминокислот представить общей формулой (I), то образование полипе
Слайд 43

Строение белков.

Различные α-аминокислоты, образуя белки, соединяются за счет аминогрупп и карбоксильных групп при помощи группировки CO NH , названной пептидной связью. В белковых молекулах имеются полипептидные цепи. Если строение α-аминокислот представить общей формулой (I), то образование полипептидной цепи (II) можно изобразить схемой

nH2N CH C OH R O α-аминокислоты (I) H2N CH C NH CH C NH CH C NH C OH R O R O R O m O полипептидная цепь белковой молекулы (II)
Слайд 44

nH2N CH C OH R O α-аминокислоты (I) H2N CH C NH CH C NH CH C NH C OH R O R O R O m O полипептидная цепь белковой молекулы (II)

Таким образом, белки, являющиеся природными высокомолекулярными соединениями, представляют собой продукты поликонденсации α-аминокислот. Полипептидные цепи белков строятся из десятков и сотен молекул, причем не одной, а различных аминокислот. Образуя цепь, они могут соединяться друг с другом в разли
Слайд 45

Таким образом, белки, являющиеся природными высокомолекулярными соединениями, представляют собой продукты поликонденсации α-аминокислот. Полипептидные цепи белков строятся из десятков и сотен молекул, причем не одной, а различных аминокислот. Образуя цепь, они могут соединяться друг с другом в различной последовательности, что приводит к огромному многообразию комбинаций аминокислотных остатков в полипептидных цепях.

Природа белка определяется не только тем, какие аминокислоты входят в его состав, но особенно и тем, в какой последовательности они соединяются друг с другом. Последовательность аминокислотных остатков в полипептидной цепи называется первичной структурой белка. Она строго специфична для белков каждо
Слайд 46

Природа белка определяется не только тем, какие аминокислоты входят в его состав, но особенно и тем, в какой последовательности они соединяются друг с другом. Последовательность аминокислотных остатков в полипептидной цепи называется первичной структурой белка. Она строго специфична для белков каждого индивидуального организма.

Большое значение имеет образование между полипептидными цепями белков или между отдельными участками таких цепей водородных и дисульфидных связей. Возникновение такого рода связей внутриполипептидных цепей также приводит к замыканию их в циклы различных размеров, к скручиванию, к образованию складок
Слайд 47

Большое значение имеет образование между полипептидными цепями белков или между отдельными участками таких цепей водородных и дисульфидных связей. Возникновение такого рода связей внутриполипептидных цепей также приводит к замыканию их в циклы различных размеров, к скручиванию, к образованию складок.

Характерная особенность полипептидных цепей многих белков – склонность закручиваться в спираль. Между отдельными витками спирали образуются внутримолекулярные водородные связи, придающие ей устойчивость. В некоторых белках полипептидные цепи могут иметь так называемую β-форму, которая стабилизируетс
Слайд 48

Характерная особенность полипептидных цепей многих белков – склонность закручиваться в спираль. Между отдельными витками спирали образуются внутримолекулярные водородные связи, придающие ей устойчивость. В некоторых белках полипептидные цепи могут иметь так называемую β-форму, которая стабилизируется межмолекулярными водородными связями, соединяющими в своеобразные нити разные цепи. α-спиральная и нитевидная β-формы полипептидных цепей являются вторичной структурой белка.

Спирали и нити вторичной структуры, а также неупорядоченные участки полипептидных цепей могут различным способом сгибаться и складываться, образуя своеобразные «клубки»; таким образом создается третичная структура белка. Она стабилизируется внутримолекулярными взаимодействиями различного типа. Неско
Слайд 49

Спирали и нити вторичной структуры, а также неупорядоченные участки полипептидных цепей могут различным способом сгибаться и складываться, образуя своеобразные «клубки»; таким образом создается третичная структура белка. Она стабилизируется внутримолекулярными взаимодействиями различного типа. Несколько «клубков» третичной структуры в некоторых белках ассоциируются, образуя еще более сложную четвертичную структуру белка.

Свойства белков. Белки – высокомолекулярные соединения. Некоторые из них обладают молекулярными массами порядка десятков (13000-68000), другие сотен (225000-300000) тысяч. Молекулярная масса отдельных белков достигает нескольких миллионов. Белковые вещества разнообразны по своему агрегатному состоян
Слайд 50

Свойства белков.

Белки – высокомолекулярные соединения. Некоторые из них обладают молекулярными массами порядка десятков (13000-68000), другие сотен (225000-300000) тысяч. Молекулярная масса отдельных белков достигает нескольких миллионов. Белковые вещества разнообразны по своему агрегатному состоянию.

Все белки нерастворимы в безводном спирте и других органических растворителях. Многие белки растворяются в воде и в разбавленных растворах солей, образуя коллоидные растворы. Имеются и белки, совершенно не растворяющиеся в воде. Белки, подобно аминокислотам, амфотерны и образуют соли как с кислотами
Слайд 51

Все белки нерастворимы в безводном спирте и других органических растворителях. Многие белки растворяются в воде и в разбавленных растворах солей, образуя коллоидные растворы. Имеются и белки, совершенно не растворяющиеся в воде. Белки, подобно аминокислотам, амфотерны и образуют соли как с кислотами, так и с основаниями. В их полипептидных цепях имеются свободные карбоксильные группы и аминогруппы.

Наличие различных функциональных групп в боковых ответвлениях полипептидных цепей придает белкам способность вступать во множество реакций; этим объясняется огромная роль белков в химических процессах, протекающих в организмах и осуществляющих явления жизни. Для всех белков характерны некоторые общи
Слайд 52

Наличие различных функциональных групп в боковых ответвлениях полипептидных цепей придает белкам способность вступать во множество реакций; этим объясняется огромная роль белков в химических процессах, протекающих в организмах и осуществляющих явления жизни. Для всех белков характерны некоторые общие свойства: осаждение из растворов и цветные реакции.

Осаждение белков из растворов. При добавлении к водным растворам белков концентрированных растворов минеральных солей (например, сульфата аммония) белки осаждаются (высаливаются). Осаждение их происходит и при добавлении органических растворителей (спирта, ацетона). Во всех этих случаях белки не изм
Слайд 53

Осаждение белков из растворов.

При добавлении к водным растворам белков концентрированных растворов минеральных солей (например, сульфата аммония) белки осаждаются (высаливаются). Осаждение их происходит и при добавлении органических растворителей (спирта, ацетона). Во всех этих случаях белки не изменяют своих свойств и при разбавлении водой вновь переходят в раствор.

Другие реагенты – соли тяжелых металлов (сульфат меди, ацетат свинца), а также кислоты (азотная, уксусная, пикриновая, трихлоруксусная) вызывают необратимое осаждение белков; под их воздействием происходит значительное изменение свойств (денатурация) белков, и они после осаждения теряют способность
Слайд 54

Другие реагенты – соли тяжелых металлов (сульфат меди, ацетат свинца), а также кислоты (азотная, уксусная, пикриновая, трихлоруксусная) вызывают необратимое осаждение белков; под их воздействием происходит значительное изменение свойств (денатурация) белков, и они после осаждения теряют способность растворяться в воде и в разбавленных солевых растворах. При нагревании многие белки также денатурируются – свертываются (например, яичный белок) и осаждаются из растворов, теряя способность растворяться в воде.

Цветные реакции белков. Биуретовая реакция. При взаимодействии в щелочной среде с солями меди (CuSO4) все белки дают фиолетовое (при сильном разбавлении сиреневое) окрашивание. Аналогичную реакцию дает уже упомянутый ранее биурет NH2 CO NH CO NH2, откуда происходит название этой реакции. В биурете и
Слайд 55

Цветные реакции белков. Биуретовая реакция.

При взаимодействии в щелочной среде с солями меди (CuSO4) все белки дают фиолетовое (при сильном разбавлении сиреневое) окрашивание. Аналогичную реакцию дает уже упомянутый ранее биурет NH2 CO NH CO NH2, откуда происходит название этой реакции. В биурете имеются две пептидные группировки CO NH , которые и обуславливают появление окраски при взаимодействии с солями меди.

Таким образом, биуретовая реакция белков подтверждает наличие в их молекулах пептидных связей. Эту реакцию дают и полипептиды, образующиеся при гидролизе белков. При этом окраска, возникающая при взаимодействии с солями меди, для различных полипептидов не одинакова: дипептиды дают синюю окраску, три
Слайд 56

Таким образом, биуретовая реакция белков подтверждает наличие в их молекулах пептидных связей. Эту реакцию дают и полипептиды, образующиеся при гидролизе белков. При этом окраска, возникающая при взаимодействии с солями меди, для различных полипептидов не одинакова: дипептиды дают синюю окраску, трипептиды – фиолетовую, а более сложные полипептиды – красную.

Ксантопротеиновая реакция. Если белки или их растворы нагревают с концентрированной азотной кислотой, они окрашиваются в желтый цвет. Реакция объясняется наличием в белках аминокислот, содержащих группировки ароматических соединений. За счет этих группировок при взаимодействии с азотной кислотой обр
Слайд 57

Ксантопротеиновая реакция.

Если белки или их растворы нагревают с концентрированной азотной кислотой, они окрашиваются в желтый цвет. Реакция объясняется наличием в белках аминокислот, содержащих группировки ароматических соединений. За счет этих группировок при взаимодействии с азотной кислотой образуются ароматические нитросоединения, окрашенные в желтый цвет.

Например, если в полипептидной цепи белка имеется звено фенилаланина, реакцию можно представить схемой: …HN CH CO… …NH CH CO … CH2 C6H5 CH2 C6H4 NO2 звено фенилаланина нитросоединение
Слайд 58

Например, если в полипептидной цепи белка имеется звено фенилаланина, реакцию можно представить схемой: …HN CH CO… …NH CH CO … CH2 C6H5 CH2 C6H4 NO2 звено фенилаланина нитросоединение

В отличие от биуретовой реакции ксантопротеиновую реакцию дают не все белки, поскольку в некоторых из них может и не быть α-аминокислот, содержащих группировки ароматических соединений.
Слайд 59

В отличие от биуретовой реакции ксантопротеиновую реакцию дают не все белки, поскольку в некоторых из них может и не быть α-аминокислот, содержащих группировки ароматических соединений.

Классификация белков. Среди белков различают две основные группы веществ: а) протеины, или простые белки, состоящие только из аминокислот и при гидролизе почти не образующие других продуктов; б) протеиды, или сложные белки, состоящие из собственно белковой части, построенной из α-аминокислот, и из с
Слайд 60

Классификация белков.

Среди белков различают две основные группы веществ: а) протеины, или простые белки, состоящие только из аминокислот и при гидролизе почти не образующие других продуктов; б) протеиды, или сложные белки, состоящие из собственно белковой части, построенной из α-аминокислот, и из соединенной с ней небелковой части, иначе называемой простетической группой; при гидролизе эти белки кроме α-аминокислот образуют и другие вещества: углеводы, фосфорную кислоту, гетероциклические соединения и т.п.

Среди протеинов выделяют несколько подгрупп, отличающихся преимущественно по растворимости. Протеиды подразделяют на подгруппы в зависимости от характера простетической группы, отщепляющейся при гидролизе от собственно белковой части.
Слайд 61

Среди протеинов выделяют несколько подгрупп, отличающихся преимущественно по растворимости. Протеиды подразделяют на подгруппы в зависимости от характера простетической группы, отщепляющейся при гидролизе от собственно белковой части.

Белковые вещества классифицируются также по форме их молекул: а) фибриллярные (волокнистые) белки, молекулы которых имеют нитевидную форму; к ним относят фиброин шелка, кератин шерсти; б) глобулярные белки, молекулы которых имеют округлую форму; к ним относятся, например, альбумины, глобулины и ряд
Слайд 62

Белковые вещества классифицируются также по форме их молекул: а) фибриллярные (волокнистые) белки, молекулы которых имеют нитевидную форму; к ним относят фиброин шелка, кератин шерсти; б) глобулярные белки, молекулы которых имеют округлую форму; к ним относятся, например, альбумины, глобулины и ряд других, в том числе и сложные белки.

Ароматические амины. Производные ароматических углеводородов, содержащие в бензольном ядре взамен атома водорода остаток аммиака – аминогруппу, представляют собой ароматические амины. Подобно аминам жирного ряда, ароматические амины можно рассматривать как производные аммиака, в котором атомы водоро
Слайд 63

Ароматические амины

Производные ароматических углеводородов, содержащие в бензольном ядре взамен атома водорода остаток аммиака – аминогруппу, представляют собой ароматические амины. Подобно аминам жирного ряда, ароматические амины можно рассматривать как производные аммиака, в котором атомы водорода замещены углеводородными радикалами, но, по крайней мере, один из этих радикалов является ароматическим.

Номенклатура и изомерия. Для многих ароматических аминов употребительны тривиальные названия. Простейший ароматический амин – производное бензола – анилин: C6H5 NH2 или NH2 анилин (фениламин) Систематическое название анилина фениламин (фенил – одновалентный радикал бензола).
Слайд 64

Номенклатура и изомерия

Для многих ароматических аминов употребительны тривиальные названия. Простейший ароматический амин – производное бензола – анилин: C6H5 NH2 или NH2 анилин (фениламин) Систематическое название анилина фениламин (фенил – одновалентный радикал бензола).

Простейшими гомологами анилина являются аминопроизводные толуола CH3 C6H4 NH2, называемые толуидинами; они существуют в виде орто-, мета- и пара-изомеров: CH3 CH3 CH3 NH2 NH2 NH2 о-толуидин м- толуидин n- толуидин (о-толиламин) (м-толиламин) (n-толиламин)
Слайд 65

Простейшими гомологами анилина являются аминопроизводные толуола CH3 C6H4 NH2, называемые толуидинами; они существуют в виде орто-, мета- и пара-изомеров: CH3 CH3 CH3 NH2 NH2 NH2 о-толуидин м- толуидин n- толуидин (о-толиламин) (м-толиламин) (n-толиламин)

Толуидины по названию радикалов толуола можно назвать о-, м- и n-толиламинами. Ароматические амины, в которых, как в анилине, толуидинах, азот аминогруппы соединен только с одним ароматическим радикалом, являются первичными аминами; вторичные и третичные амины содержат в соединении с азотом соответс
Слайд 66

Толуидины по названию радикалов толуола можно назвать о-, м- и n-толиламинами. Ароматические амины, в которых, как в анилине, толуидинах, азот аминогруппы соединен только с одним ароматическим радикалом, являются первичными аминами; вторичные и третичные амины содержат в соединении с азотом соответственно два или три радикала и могут быть двух типов:

а) жирно-ароматические – содержат в соединении с азотом не только ароматический, но и алкильные радикалы, например: CH3 NH CH3 N CH3 N- метиламин N,N - диметиланилин (вторичный амин) (третичный амин)
Слайд 67

а) жирно-ароматические – содержат в соединении с азотом не только ароматический, но и алкильные радикалы, например: CH3 NH CH3 N CH3 N- метиламин N,N - диметиланилин (вторичный амин) (третичный амин)

б) чисто ароматические амины – в них азот связан только с ароматическими радикалами, например: NH N дифениламин трифениламин (вторичный амин) (третичный амин)
Слайд 68

б) чисто ароматические амины – в них азот связан только с ароматическими радикалами, например: NH N дифениламин трифениламин (вторичный амин) (третичный амин)

Химические свойства Реакции за счет аминогруппы. Подобно аминам жирного ряда, ароматические амины проявляют свойства оснований и с кислотами образуют соли замещенного аммония. Например: C6H5NH2 + HCl [ C6H5NH3 ] Cl хлорид фениламмония C6H5NH2 + H2SO4 [ C6H5NH3 ]2 SO4 сульфат фениламмония
Слайд 69

Химические свойства Реакции за счет аминогруппы

Подобно аминам жирного ряда, ароматические амины проявляют свойства оснований и с кислотами образуют соли замещенного аммония. Например: C6H5NH2 + HCl [ C6H5NH3 ] Cl хлорид фениламмония C6H5NH2 + H2SO4 [ C6H5NH3 ]2 SO4 сульфат фениламмония

Основные свойства у ароматических аминов гораздо менее выражены, чем у аминов жирного ряда, что объясняется влиянием бензольного кольца. Водный раствор анилина C6H5NH2 не показывает щелочной реакции на лакмус. Его соли с соляной или серной кислотой сильно гидролизуются, растворы этих солей в воде им
Слайд 70

Основные свойства у ароматических аминов гораздо менее выражены, чем у аминов жирного ряда, что объясняется влиянием бензольного кольца. Водный раствор анилина C6H5NH2 не показывает щелочной реакции на лакмус. Его соли с соляной или серной кислотой сильно гидролизуются, растворы этих солей в воде имеют кислую реакцию и окрашивают лакмус в красный цвет, так как они представляют собой растворы солей слабых оснований и сильных кислот.

Реакции с азотистой кислотой. Первичные ароматические амины в реакции с азотистой кислотой (HNO2) отличаются от первичных аминов жирного ряда. Если на соль первичного ароматического амина подействовать на холоду азотистой кислотой, то образуется диазосоединение + + NH3 Cl¯+ O = N OH N ≡ N Cl ¯ + 2H2
Слайд 71

Реакции с азотистой кислотой

Первичные ароматические амины в реакции с азотистой кислотой (HNO2) отличаются от первичных аминов жирного ряда. Если на соль первичного ароматического амина подействовать на холоду азотистой кислотой, то образуется диазосоединение + + NH3 Cl¯+ O = N OH N ≡ N Cl ¯ + 2H2O соль анилина азотистая диазосоединение кислота (соль диазония) Вторичные ароматические амины, подобно аминам жирного ряда, с азотистой кислотой образуют нитрозамины.

Третичные ароматические амины, в отличии от третичных аминов жирного ряда, взаимодействуют с азотистой кислотой. Третичная аминогруппа проявляет себя как заместитель I рода, поэтому остаток азотистой кислоты – нитрозогруппа – легко замещает водород в бензольном ядре в пара - положении к аминогруппе:
Слайд 72

Третичные ароматические амины, в отличии от третичных аминов жирного ряда, взаимодействуют с азотистой кислотой. Третичная аминогруппа проявляет себя как заместитель I рода, поэтому остаток азотистой кислоты – нитрозогруппа – легко замещает водород в бензольном ядре в пара - положении к аминогруппе: (CH3)2 N H+HONO (CH3)2 N + NO+H2O

Реакции за счет ароматического ядра. Аминогруппа как заместитель I рода облегчает реакции замещения в бензольном ядре; при этом замещающие группы ставятся в орто- и пара-положения к аминогруппе. Например, при действии бромной воды из анилина получается 2,4,6 – триброманилин: NH2 NH2 Br Br + 3 Br2 +
Слайд 73

Реакции за счет ароматического ядра

Аминогруппа как заместитель I рода облегчает реакции замещения в бензольном ядре; при этом замещающие группы ставятся в орто- и пара-положения к аминогруппе. Например, при действии бромной воды из анилина получается 2,4,6 – триброманилин: NH2 NH2 Br Br + 3 Br2 + 3HBr Br анилин 2,4,6 – триброманилин

Действие окислителей. Под влиянием аминогруппы бензольное ядро теряет устойчивость к действию окислителей, и ароматические амины легко окисляются. Например, окисляя анилин (хромовой смесью K2Cr2O7 + H2SO4), получают хинон: NH2 O + NH3 O анилин хинон
Слайд 74

Действие окислителей.

Под влиянием аминогруппы бензольное ядро теряет устойчивость к действию окислителей, и ароматические амины легко окисляются. Например, окисляя анилин (хромовой смесью K2Cr2O7 + H2SO4), получают хинон: NH2 O + NH3 O анилин хинон

Способы получения ароматических аминов. Наибольший интерес представляет метод синтеза первичных ароматических аминов путем восстановления нитросоединений (реакция Зинина) NO2 NH2 + 2H2O нитробензол анилин
Слайд 75

Способы получения ароматических аминов

Наибольший интерес представляет метод синтеза первичных ароматических аминов путем восстановления нитросоединений (реакция Зинина) NO2 NH2 + 2H2O нитробензол анилин

Ароматические диазосоединения и азосоединения (азокрасители). Среди производных первичных ароматических аминов одними из наиболее важных являются диазосоединения и азосоединения. И те и другие содержат двухвалентную группу из двух атомов азота N = N , называемую азогруппой.
Слайд 76

Ароматические диазосоединения и азосоединения (азокрасители)

Среди производных первичных ароматических аминов одними из наиболее важных являются диазосоединения и азосоединения. И те и другие содержат двухвалентную группу из двух атомов азота N = N , называемую азогруппой.

В диазосоединениях азогруппа связана только с одним ароматическим углеводородным радикалом (Ar) и с какой-нибудь группой, присоединенной не через углеродный атом, например, с гидроксильной (OH). В азосоединениях азогруппа непосредственно связана с двумя ароматическими углеводородными радикалами: Ar
Слайд 77

В диазосоединениях азогруппа связана только с одним ароматическим углеводородным радикалом (Ar) и с какой-нибудь группой, присоединенной не через углеродный атом, например, с гидроксильной (OH). В азосоединениях азогруппа непосредственно связана с двумя ароматическими углеводородными радикалами: Ar N = N OH Ar N = N Ar диазосоединение азосоединение

Диазосоединения существуют в нескольких формах, легко превращающихся одна в другую. Вещества, отвечающие формуле Ar N = N OH, называются диазогидроксидами, они обладают амфотерными свойствами. При взаимодействии с кислотами диазогидроксиды ведут себя как основания и образуют соли диазония: + Ar N =
Слайд 78

Диазосоединения существуют в нескольких формах, легко превращающихся одна в другую. Вещества, отвечающие формуле Ar N = N OH, называются диазогидроксидами, они обладают амфотерными свойствами. При взаимодействии с кислотами диазогидроксиды ведут себя как основания и образуют соли диазония: + Ar N = N OH + HCl Ar N N Cl¯ + H2O диазогидроксид соль диазония

Под действием щелочей соли диазония вновь переходят в диазогидроксиды: + Ar N N Cl¯ + NaOH Ar N = N OH + HCl соль диазония диазогидроксид Простейшее ароматическое диазосоединение является производным бензола. Соответствующая соль диазония, существующая в солянокислой среде, называется хлоридом бензо
Слайд 79

Под действием щелочей соли диазония вновь переходят в диазогидроксиды: + Ar N N Cl¯ + NaOH Ar N = N OH + HCl соль диазония диазогидроксид Простейшее ароматическое диазосоединение является производным бензола. Соответствующая соль диазония, существующая в солянокислой среде, называется хлоридом бензолдиазония (это соединение называют также хлоридом фенилдиазония).

Простейшее ароматическое диазосоединение является производным бензола. Соответствующая соль диазония, существующая в солянокислой среде, называется хлоридом бензолдиазония (это соединение называют также хлоридом фенилдиазония).
Слайд 80

Простейшее ароматическое диазосоединение является производным бензола. Соответствующая соль диазония, существующая в солянокислой среде, называется хлоридом бензолдиазония (это соединение называют также хлоридом фенилдиазония).

Образование этой соли под действием соляной кислоты и обратный переход в диазогидроксид под влиянием щелочи можно представить схемой N = N OH N+ N Cl¯ NaOH диазогидроксид хлорид бензолдиазония Соли диазония – наиболее важная форма диазосоединений.
Слайд 81

Образование этой соли под действием соляной кислоты и обратный переход в диазогидроксид под влиянием щелочи можно представить схемой N = N OH N+ N Cl¯ NaOH диазогидроксид хлорид бензолдиазония Соли диазония – наиболее важная форма диазосоединений.

Получение ароматических диазосоединений. Диазосоединения получаются при диазотировании первичных ароматических аминов, т.е. при действии на них азотистой кислоты. Так как азотистая кислота в свободном виде неустойчива, то обычно к раствору амина в избытке соляной кислоты прибавляют раствор соли азот
Слайд 82

Получение ароматических диазосоединений

Диазосоединения получаются при диазотировании первичных ароматических аминов, т.е. при действии на них азотистой кислоты. Так как азотистая кислота в свободном виде неустойчива, то обычно к раствору амина в избытке соляной кислоты прибавляют раствор соли азотистой кислоты – нитрита натрия NaNO2. Нитрит натрия разлагается соляной кислотой и выделяющаяся азотистая кислота HNO2 сразу же взаимодействует с амином. В этих условиях диазосоединения образуются в виде солей диазония, с которыми обычно имеют дело при практическом использовании диазосоединений.

Например, при диазотировании простейшего первичного ароматического амина протекают следующие реакции: + NH2 + HCl NH3 Cl¯ анилин соль анилина NaNO2 + HCl HNO2 + NaCl нитрит натрия азотистая кислота
Слайд 83

Например, при диазотировании простейшего первичного ароматического амина протекают следующие реакции: + NH2 + HCl NH3 Cl¯ анилин соль анилина NaNO2 + HCl HNO2 + NaCl нитрит натрия азотистая кислота

+ NH3 Cl¯ + HO N = O N ≡ N Cl¯+ +H2O соль анилина азотистая диазосоединение кислота (соль диазония) Диазотирование ведут при охлаждении, так как диазосоединения нестойки.
Слайд 84

+ NH3 Cl¯ + HO N = O N ≡ N Cl¯+ +H2O соль анилина азотистая диазосоединение кислота (соль диазония) Диазотирование ведут при охлаждении, так как диазосоединения нестойки.

Химические свойства диазосоединений. Соли диазония – весьма реакционноспособные вещества. Используя их как промежуточные продукты, из первичных аминов можно получать разнообразные органические соединения. Различают два типа превращений диазосоединений:
Слайд 85

Химические свойства диазосоединений

Соли диазония – весьма реакционноспособные вещества. Используя их как промежуточные продукты, из первичных аминов можно получать разнообразные органические соединения. Различают два типа превращений диазосоединений:

Реакции, протекающие с выделением азота. Диазосоединения неустойчивы; в кислом растворе уже при слабом нагревании или под действием света они гидролизуются, выделяя азот, и превращаются в фенолы: + N ≡ N Cl ¯ + HOH OH+ + N2 +HCl диазосоединение фенол
Слайд 86

Реакции, протекающие с выделением азота.

Диазосоединения неустойчивы; в кислом растворе уже при слабом нагревании или под действием света они гидролизуются, выделяя азот, и превращаются в фенолы: + N ≡ N Cl ¯ + HOH OH+ + N2 +HCl диазосоединение фенол

Если соль диазония – хлорид, бромид или иодид – нагревать с соответствующей солью меди (CuCl, CuBr, CuJ), реакция протекает также с выделением азота. Вместо диазогруппы в бензольное ядро вводится галоген – образуются ароматические галогенпроизводные. Например: + N ≡ N Cl ¯ Cl + N2 хлорид бензолдиазо
Слайд 87

Если соль диазония – хлорид, бромид или иодид – нагревать с соответствующей солью меди (CuCl, CuBr, CuJ), реакция протекает также с выделением азота. Вместо диазогруппы в бензольное ядро вводится галоген – образуются ароматические галогенпроизводные. Например: + N ≡ N Cl ¯ Cl + N2 хлорид бензолдиазония хлорбензол

Реакции, протекающие без выделения азота. Среди реакций этого типа наиболее важны реакции взаимодействия солей диазония с фенолами и ароматическими аминами, приводящие к образованию азосоединений (азокрасителей). Простейшими азосоединениями является азобензол – вещество, в котором азогруппа ( N = N
Слайд 88

Реакции, протекающие без выделения азота.

Среди реакций этого типа наиболее важны реакции взаимодействия солей диазония с фенолами и ароматическими аминами, приводящие к образованию азосоединений (азокрасителей). Простейшими азосоединениями является азобензол – вещество, в котором азогруппа ( N = N ) соединена с двумя остатками бензола: N = N Огромное значение имеют азосоединения, содержащие в ароматических ядрах гидроксильные группы или аминогруппы; они представляют собой большой класс красящих веществ, называемых азокрасителями.

Получение азосоединений. Азосоединения получают при взаимодействии солей диазония с фенолами или ароматическимим аминами; эту реакцию называют реакцией азосочетания. Например, при сочетании диазосоединения из анилина с фенолом образуется азокраситель оранжевого цвета. + N ≡ N Cl¯ + H OH диазосоедине
Слайд 89

Получение азосоединений

Азосоединения получают при взаимодействии солей диазония с фенолами или ароматическимим аминами; эту реакцию называют реакцией азосочетания. Например, при сочетании диазосоединения из анилина с фенолом образуется азокраситель оранжевого цвета. + N ≡ N Cl¯ + H OH диазосоединение фенол из анилина N = N OH + HCl азокраситель (гидроксиазосоединение)

Если то же диазосоединение взаимодействует с диметиланилином (ароматическим амином), то получается азокраситель желтого цвета. С фенолами азосочетание ведут в щелочной среде, а с аминами в слабокислой или нейтральной. Исходный для получения азокрасителей первичный ароматический амин, который путем д
Слайд 90

Если то же диазосоединение взаимодействует с диметиланилином (ароматическим амином), то получается азокраситель желтого цвета. С фенолами азосочетание ведут в щелочной среде, а с аминами в слабокислой или нейтральной. Исходный для получения азокрасителей первичный ароматический амин, который путем диазотирования превращают в диазосоединение, называется диазосоставляющей, а фенол или амин, вводимый в азосочетание, – азосоставляющей красителя.

Полная схема синтеза азокрасителя (азосоединения), известного под названием паракрасный. В качестве диазосостаавляющей берется n -нитроанилин, а в качестве азосоставляющей – β-нафтол. 1) диазотирование + O2N NH2 O2N NH3 Cl¯ n-нитроанилин соль нитроанилина + _ O2N N ≡ N Cl + 2H2O диазосоединение хлор
Слайд 91

Полная схема синтеза азокрасителя (азосоединения), известного под названием паракрасный. В качестве диазосостаавляющей берется n -нитроанилин, а в качестве азосоставляющей – β-нафтол. 1) диазотирование + O2N NH2 O2N NH3 Cl¯ n-нитроанилин соль нитроанилина + _ O2N N ≡ N Cl + 2H2O диазосоединение хлорид п-нитробензолдиазония

2) азосочетание OH + O2N N ≡ N Cl¯ + H β-нафтол (азосоставляющая) OH O2N N = N + HCl азокраситель (паракрасный) β-нафтол вступает в азосочетание за счет водорода в орто-положении к группе OH (заместителю I рода) (α-нафтол сочетается за счет водорода в пара положении к группе OH).
Слайд 92

2) азосочетание OH + O2N N ≡ N Cl¯ + H β-нафтол (азосоставляющая) OH O2N N = N + HCl азокраситель (паракрасный) β-нафтол вступает в азосочетание за счет водорода в орто-положении к группе OH (заместителю I рода) (α-нафтол сочетается за счет водорода в пара положении к группе OH).

Рекомендуемая литература Пример списка литературы. Коровин Николай Васильевич. Общая химия: Учебник. - 2-е изд., испр. и доп. - М.: Высш. шк., 2000. - 558с.: ил. Павлов Н.Н. Общая и неорганическая химия: Учеб. для вузов. – 2-е изд., перераб. и доп. – М.: Дрофа, 2002. – 448 с.: ил. Ахметов Наиль Сибг
Слайд 93

Рекомендуемая литература Пример списка литературы

Коровин Николай Васильевич. Общая химия: Учебник. - 2-е изд., испр. и доп. - М.: Высш. шк., 2000. - 558с.: ил. Павлов Н.Н. Общая и неорганическая химия: Учеб. для вузов. – 2-е изд., перераб. и доп. – М.: Дрофа, 2002. – 448 с.: ил. Ахметов Наиль Сибгатович. Общая и неорганическая химия: Учебник для студ. химико-технологических спец. вузов / Н.С.Ахметов. - 4-е изд., исп. - М.:Высш. шк.: Академия, 2001. - 743с.: ил. Глинка Николай Леонидович. Общая химия: Учебное пособие для вузов / Н.Л.Глинка; Ермаков Л.И (ред.) – 29–е изд.; исп. – М.: Интеграл Пресс, 2002 – 727с.: ил. Писаренко А.П., Хавин З.Я. Курс органической химии – М.: Высшая школа,1975,1985. Альбицкая В.М., Серкова В.И. Задачи и упражнения по органической химии. – М.: Высш. шк., 1983. Грандберг И.И. Органическая химия – М.: Дрофа, 2001. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия М.: Высш. Шк., 1981 Иванов В.Г., Гева О.Н., Гаверова Ю.Г. Практикум по органической химии – М.: Академия., 2000.

Список похожих презентаций

НУКЛЕИНОВЫЕ КИСЛОТЫ. АТФ И ДРУГИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

НУКЛЕИНОВЫЕ КИСЛОТЫ. АТФ И ДРУГИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Нуклеиновые кислоты. ДНК. РНК. Нуклеиновые кислоты были открыты в 1869 году швейцарским биохимиком Фридрихом Мишером. Фридрих Мишер (1844 – 1895). ...
АМФОРТНЫЕ НЕОРГАНИЧЕСКИЕ И ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

АМФОРТНЫЕ НЕОРГАНИЧЕСКИЕ И ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

1. Верное утверждение о значении понятия «амфотерность»: 1) преобладание кислотных свойств вещества над основными; 2) проявление веществом как кислотных, ...
Многоликая химия

Многоликая химия

«Счастливый случай». игра. Гейм I. «Многоликая химия». Общие химические знания. 1. Как называют вещества, которые изменяют скорость химической реакции ...
Опасная химия

Опасная химия

Выводы по теме «Осторожно, ртуть!»:. Ртуть- очень ядовитый материал, который попадает в организм человека при вдыхании ядовитых паров или употреблении ...
Токсикологическая химия

Токсикологическая химия

Токсикологическая химия. Токсикологическая химия – это наука о химических превращениях токсических веществ и их метаболитов в организме, методах их ...
«Задачи» химия

«Задачи» химия

- исследование задач по нанонауке; - ознакомление с наномиром: о достижениях нанохимии и нанотехнологии; - составление задач по нанонауке; - решение ...
Периодическая система химия

Периодическая система химия

Предпосылки. И. Дёберейнер, Ж. Дюма, французский химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Ньюлендс - существование групп элементов, сходных ...
Сера химия

Сера химия

Сера принадлежит к числу веществ, известных человечеству испокон веков. Ещё древние греки и римляне нашли ей разнообразное практическое применение. ...
Аналитическая химия

Аналитическая химия

Определение. Аналити́ческая хи́мия — раздел химии, изучающий химический состав и структуру веществ; имеет целью определение элементов или групп элементов, ...
Органическая химия А.А.Карцовой и А.Н.Лёвкина

Органическая химия А.А.Карцовой и А.Н.Лёвкина

. H3C-O-CH3 CH3-CH2-CH3 6 C УГЛЕРОД 12,011. Основные классы органических веществ. H2C=CH─CH2─CH3 HC≡C─CH2─CH3 H2C=CH─CH=CH2 CH3─CH2─OH CH3─CH2─NH2 ...
Азот химия

Азот химия

План урока:. История открытия Цели Нахождение в природе Строение и свойства атома и молекулы Физические и химические свойства Получение и применение ...
алюминий химия

алюминий химия

получение алюминия. Применение алюминия. ...
«Электролитическая диссоциация» химия

«Электролитическая диссоциация» химия

Электролитическая диссоциация. H2O. Процесс распада электролита на ионы при растворении его в воде или расплавлении называется электролитической диссоциацией. ...
«Окислительно-восстановительные реакции» химия

«Окислительно-восстановительные реакции» химия

СОДЕРЖАНИЕ:. 1. Какие реакции называются окислительно-восстановительными? 2. Что называют окислителем, восстановителем? 3. Окислительно-восстановительный ...
«Нуклеиновые кислоты» химия

«Нуклеиновые кислоты» химия

Цель урока: сформировать у студентов понимание взаимосвязанности и взаимозависимости веществ в клетке. Задачи урока: повторить строение и основные ...
Органическая химия

Органическая химия

ФЕНОЛЫ. 2. Классификация и изомерия Как и спирты, фенолы бывают одноатомные (одна -OH) и многоатомными (несколько -OH). Для фенолов характерна изомерия ...
Аналитическая химия

Аналитическая химия

План доклада. Аналитическая химия (определение) Гармонизация терминологии по аналитической химии Роль терминологии Источники терминологии Цели и задачи ...
Органическая химия

Органическая химия

Цель: уяснить знания о предмете изучения и особенностях органической химии. Широко распростирает химия руки свои в дела человеческие … куда ни посмотрим, ...
Аналитическая химия

Аналитическая химия

Цель программы:. Фундаментальная подготовка магистрантов в области аналитической химии со знанием современных физико-химических методов анализа (хроматографических, ...
Органические вещества химия

Органические вещества химия

Органическая химия – это дремучий лес, в который и не отважишься войти. Фридрих Велер. С глубокой древности человечество использовало для удовлетворения ...

Конспекты

ЩЕЛОЧНЫЕ МЕТАЛЛЫ И ИХ СОЕДИНЕНИЯ

ЩЕЛОЧНЫЕ МЕТАЛЛЫ И ИХ СОЕДИНЕНИЯ

Иванова Анна Владимировна. ГБОУ СОШ №1909 ЮВАО г. Москвы. Учитель химии. КОНСПЕКТ УРОКА ПО ТЕМЕ «ЩЕЛОЧНЫЕ МЕТАЛЛЫ И ИХ СОЕДИНЕНИЯ». Цель:. ...
КАЛЬЦИЙ И ЕГО СОЕДИНЕНИЯ

КАЛЬЦИЙ И ЕГО СОЕДИНЕНИЯ

Тема: «КАЛЬЦИЙ И ЕГО СОЕДИНЕНИЯ». Цели:. Образовательная: изучение соединений кальция, их значения и применения;. . развивающая: развитие познавательной ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:24 сентября 2018
Категория:Химия
Содержит:93 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации