- Углеводороды алкены

Презентация "Углеводороды алкены" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41

Презентацию на тему "Углеводороды алкены" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 41 слайд(ов).

Слайды презентации

АЛКЕНЫ – НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ. ПОЛУЧЕНИЕ, ХИМИЧЕСКИЕ СВОЙСТВА И ПРИМЕНЕНИЕ.
Слайд 1

АЛКЕНЫ – НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ. ПОЛУЧЕНИЕ, ХИМИЧЕСКИЕ СВОЙСТВА И ПРИМЕНЕНИЕ.

Учебная цель: изучить способы получения, химические свойства и применение алкенов на примере непредельного углеводорода - этилена
Слайд 2

Учебная цель:

изучить способы получения, химические свойства и применение алкенов на примере непредельного углеводорода - этилена

Эпиграф к уроку. «Границ научному познанию и предсказанию предвидеть невозможно» Д.И.Менделеев
Слайд 3

Эпиграф к уроку

«Границ научному познанию и предсказанию предвидеть невозможно» Д.И.Менделеев

Лист самоанализа учебной деятельности учащегося ___________ по теме «Получение, химические свойства и применение алкенов»
Слайд 4

Лист самоанализа учебной деятельности учащегося ___________ по теме «Получение, химические свойства и применение алкенов»

Ответьте, пожалуйста, на следующие вопросы: Какие углеводороды называются алкенами? Какова общая формула алкенов? Какова структурная формула первого представителя гомологического ряда алкенов? Назовите его. Почему в отличие от алканов алкены в природе практически не встречаются? Какие способы получе
Слайд 5

Ответьте, пожалуйста, на следующие вопросы:

Какие углеводороды называются алкенами? Какова общая формула алкенов? Какова структурная формула первого представителя гомологического ряда алкенов? Назовите его. Почему в отличие от алканов алкены в природе практически не встречаются? Какие способы получения алкенов вы знаете? Каким лабораторным способом можно получить алкены? Какие химические свойства обуславливает наличие кратной (двойной) связи в молекулах алкенов? Для чего используют алкены?

ПРОМЫШЛЕННЫЕ. СПОСОБЫ ПОЛУЧЕНИЯ АЛКЕНОВ. ЛАБОРАТОРНЫЕ КРЕКИНГ АЛКАНОВ. ДЕГИДРИРОВАНИЕ АЛКАНОВ. ДЕГИДРАТАЦИЯ СПИРТОВ. ДЕГАЛОГЕНИРОВАНИЕ. ДЕГИДРО- ГАЛОГЕНИРОВАНИЕ
Слайд 6

ПРОМЫШЛЕННЫЕ

СПОСОБЫ ПОЛУЧЕНИЯ АЛКЕНОВ

ЛАБОРАТОРНЫЕ КРЕКИНГ АЛКАНОВ

ДЕГИДРИРОВАНИЕ АЛКАНОВ

ДЕГИДРАТАЦИЯ СПИРТОВ

ДЕГАЛОГЕНИРОВАНИЕ

ДЕГИДРО- ГАЛОГЕНИРОВАНИЕ

ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ. КРЕКИНГ АЛКАНОВ АЛКАН → АЛКАН + АЛКЕН С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ ЦЕПЬЮ ЦЕПЬЮ ПРИМЕР: t=400-700C С10Н22 → C5H12 + C5H10 декан пентан пентен
Слайд 7

ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ

КРЕКИНГ АЛКАНОВ АЛКАН → АЛКАН + АЛКЕН С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ ЦЕПЬЮ ЦЕПЬЮ ПРИМЕР: t=400-700C С10Н22 → C5H12 + C5H10 декан пентан пентен

ДЕГИДРИРОВАНИЕ АЛКАНОВ АЛКАН → АЛКЕН + ВОДОРОД ПРИМЕР: Ni, t=500C Н3С - СН3 → Н2С = СН2 + Н2 этан этен (этилен)
Слайд 8

ДЕГИДРИРОВАНИЕ АЛКАНОВ АЛКАН → АЛКЕН + ВОДОРОД ПРИМЕР: Ni, t=500C Н3С - СН3 → Н2С = СН2 + Н2 этан этен (этилен)

ЛАБОРАТОРНЫЙ СПОСОБ ПОЛУЧЕНИЯ. ДЕГИДРАТАЦИЯ СПИРТОВ СПИРТ → АЛКЕН + ВОДА ПРИМЕР: t≥140C, Н Н Н2SO4(конц.) Н-С – С-Н → Н2С = СН2 + Н2О Н ОН этен этанол (этилен)
Слайд 9

ЛАБОРАТОРНЫЙ СПОСОБ ПОЛУЧЕНИЯ

ДЕГИДРАТАЦИЯ СПИРТОВ СПИРТ → АЛКЕН + ВОДА ПРИМЕР: t≥140C, Н Н Н2SO4(конц.) Н-С – С-Н → Н2С = СН2 + Н2О Н ОН этен этанол (этилен)

ДЕГАЛОГЕНИРОВАНИЕ ПРИМЕР: t Н2С – СН2 + Zn → Н2С = СН2 + ZnBr2 Br Br этен 1,2-дибромэтан (этилен)
Слайд 10

ДЕГАЛОГЕНИРОВАНИЕ ПРИМЕР: t Н2С – СН2 + Zn → Н2С = СН2 + ZnBr2 Br Br этен 1,2-дибромэтан (этилен)

ДЕГИДРОГАЛОГЕНИРОВАНИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕ ПРИМЕР: спиртовой H H раствор Н-С–С-Н+KOH→Н2С=СН2+KCl+H2O Н Cl этен хлорэтан (этилен)
Слайд 11

ДЕГИДРОГАЛОГЕНИРОВАНИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕ ПРИМЕР: спиртовой H H раствор Н-С–С-Н+KOH→Н2С=СН2+KCl+H2O Н Cl этен хлорэтан (этилен)

Типы химических реакций, которые характерны для алкенов. Реакции присоединения. Реакции полимеризации. Реакции окисления.
Слайд 12

Типы химических реакций, которые характерны для алкенов

Реакции присоединения. Реакции полимеризации. Реакции окисления.

Реакции присоединения. 1.	Гидрирование. CН2 = СН2 + Н2 СН3 – СН3 Этен этан Условия реакции: катализатор – Ni, Pt, Pd 2.	Галогенирование. 1 2 3 CН2 = СН – СН3 + Сl – Сl СН2 – СН – СН3 пропен Cl Cl 1,2-дихлорпропан Реакция идёт при обычных условиях.
Слайд 13

Реакции присоединения

1. Гидрирование. CН2 = СН2 + Н2 СН3 – СН3 Этен этан Условия реакции: катализатор – Ni, Pt, Pd 2. Галогенирование. 1 2 3 CН2 = СН – СН3 + Сl – Сl СН2 – СН – СН3 пропен Cl Cl 1,2-дихлорпропан Реакция идёт при обычных условиях.

Электрофильное присоединение. Молекула галогена не имеет собственного диполя, однако в близи π-электронов происходит поляризация ковалентной связи, благодаря чему галоген ведёт себя как электрофильный агент.
Слайд 14

Электрофильное присоединение

Молекула галогена не имеет собственного диполя, однако в близи π-электронов происходит поляризация ковалентной связи, благодаря чему галоген ведёт себя как электрофильный агент.

3.	Гидрогалогенирование. 1 2 3 4 1 2 3 4 СН2 = СН – СН2 – СН3 + Н – Сl	CН3 – СН – СН2 – СН3 Бутен-1 Cl 2-хлорбутан 4.	Гидратация. 1 2 3 1 2 3 CН2 = СН – СН3 + Н – ОН СН3 – СН – СН3 пропен ОН пропанол-2 Условия реакции: катализатор – серная кислота, температура. Присоединение молекул галогеноводородо
Слайд 15

3. Гидрогалогенирование. 1 2 3 4 1 2 3 4 СН2 = СН – СН2 – СН3 + Н – Сl CН3 – СН – СН2 – СН3 Бутен-1 Cl 2-хлорбутан 4. Гидратация. 1 2 3 1 2 3 CН2 = СН – СН3 + Н – ОН СН3 – СН – СН3 пропен ОН пропанол-2 Условия реакции: катализатор – серная кислота, температура. Присоединение молекул галогеноводородов и воды к молекулам алкенов происходит в соответствии с правилом В.В. Марковникова.

Гидрогалогенирование гомологов этилена. Правило В.В. Марковникова Атом водорода присоединяется к наиболее гидрированному атому углерода при двойной связи, а атом галогена или гидроксогруппа – к наименее гидрированному.
Слайд 16

Гидрогалогенирование гомологов этилена

Правило В.В. Марковникова Атом водорода присоединяется к наиболее гидрированному атому углерода при двойной связи, а атом галогена или гидроксогруппа – к наименее гидрированному.

СХЕМЫ РЕАКЦИИ ПРИСОЕДИНЕНИЯ
Слайд 17

СХЕМЫ РЕАКЦИИ ПРИСОЕДИНЕНИЯ

Реакции окисления. Реакция Вагнера. (Мягкое окисление раствором перманганата калия). 3СН2 = СН2 + 2КМnО4 + 4Н2О 3СН2 - СН2 + 2МnО2 + 2КОН ОН ОН Или С2Н4 + (О) + Н2О С2Н4(ОН)2. этандиол этен
Слайд 18

Реакции окисления

Реакция Вагнера. (Мягкое окисление раствором перманганата калия). 3СН2 = СН2 + 2КМnО4 + 4Н2О 3СН2 - СН2 + 2МnО2 + 2КОН ОН ОН Или С2Н4 + (О) + Н2О С2Н4(ОН)2

этандиол этен

РЕАКЦИИ ОКИСЛЕНИЯ. МЯГКОЕ ОКИСЛЕНИЕ – ВЗАИМОДЕЙСТВИЕ С РАСТВОРОМ ПЕРМАНАГАНАТА КАЛИЯ (реакция Е.Е.Вагнера) Н2С=СН2 + [O] + H2O H2C - CH2 OH OH этиленгликоль (этандиол-1,2) ! Качественная реакция на непредельность углеводорода – на кратную связь.
Слайд 19

РЕАКЦИИ ОКИСЛЕНИЯ

МЯГКОЕ ОКИСЛЕНИЕ – ВЗАИМОДЕЙСТВИЕ С РАСТВОРОМ ПЕРМАНАГАНАТА КАЛИЯ (реакция Е.Е.Вагнера) Н2С=СН2 + [O] + H2O H2C - CH2 OH OH этиленгликоль (этандиол-1,2) ! Качественная реакция на непредельность углеводорода – на кратную связь.

1. Мягкое окисление алкенов водным раствором перманганата калия приводит к образованию двухатомных спиртов (реакция Вагнера): KMnO4 СН2=СН2 + [O] + H2O  HOCH2CH2OH этилен этиленгликоль (этандиол) Полное уравнение реакции: 3СН2=СН2 + 2KMnO4 + 4H2O  3HOCH2CH2OH + 2KOH + 2MnO2 Электронный ба
Слайд 20

1. Мягкое окисление алкенов водным раствором перманганата калия приводит к образованию двухатомных спиртов (реакция Вагнера): KMnO4 СН2=СН2 + [O] + H2O  HOCH2CH2OH этилен этиленгликоль (этандиол) Полное уравнение реакции: 3СН2=СН2 + 2KMnO4 + 4H2O  3HOCH2CH2OH + 2KOH + 2MnO2 Электронный баланс: 2 MnO4 + 2 H2O + 3e  MnO2 + 4 OH восстановление 3 C2H4 + 2 OH  2e  C2H4(OH)2 окисление  2 MnO4 + 4 H2O + 3 C2H4  2 MnO2 + 2 OH + 3 C2H4(OH)2 В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены.

ГОРЕНИЕ АЛКЕНОВ ПРИМЕР: 2С2Н6 + 7О2 4СО2 + 6Н2О
Слайд 21

ГОРЕНИЕ АЛКЕНОВ ПРИМЕР: 2С2Н6 + 7О2 4СО2 + 6Н2О

Возможные продукты окисления алкенов. эпоксиды диолы. альдегиды или кетоны. кислоты
Слайд 22

Возможные продукты окисления алкенов

эпоксиды диолы

альдегиды или кетоны

кислоты

РЕАКЦИЯ ПОЛИМЕРИЗАЦИИ. Это процесс соединения одинаковых молекул в более крупные. ПРИМЕР: n CH2=CH2 (-CH2-CH2-)n этилен полиэтилен (мономер) (полимер) n – степень полимеризации, показывает число молекул, вступивших в реакцию -CH2-CH2- структурное звено
Слайд 23

РЕАКЦИЯ ПОЛИМЕРИЗАЦИИ

Это процесс соединения одинаковых молекул в более крупные. ПРИМЕР: n CH2=CH2 (-CH2-CH2-)n этилен полиэтилен (мономер) (полимер) n – степень полимеризации, показывает число молекул, вступивших в реакцию -CH2-CH2- структурное звено

Реакции полимеризации (свободно-радикальное присоединение). Полимеризация – это последовательное соединение одинаковых молекул в более крупные. σ σ σ СН2 = СН2 + СН2 = СН2 + СН2 = СН2 + … π π π σ σ σ – СН2 – СН2 – + – СН2 – СН2 – + – СН2 – СН2 – … – СН2 – СН2 – СН2 – СН2 – СН2 – СН2 – … Сокращённо у
Слайд 24

Реакции полимеризации (свободно-радикальное присоединение)

Полимеризация – это последовательное соединение одинаковых молекул в более крупные. σ σ σ СН2 = СН2 + СН2 = СН2 + СН2 = СН2 + … π π π σ σ σ – СН2 – СН2 – + – СН2 – СН2 – + – СН2 – СН2 – … – СН2 – СН2 – СН2 – СН2 – СН2 – СН2 – … Сокращённо уравнение этой реакции записывается так: n СН2 = СН2 (– СН2 – СН2 –)n Этен полиэтилен Условия реакции: повышенная температура, давление, катализатор.

Применение этилена
Слайд 25

Применение этилена

Практическая работа. Получение и изучение свойств этилена. Цель работы: получить этилен и провести опыты, характеризующие его свойства. Оборудование и реактивы: спиртовка, спички, лабораторный штатив, винт, лапка, пробка с газоотводной трубкой, штатив с пробирками, фильтровальная бумага; этанол, реч
Слайд 27

Практическая работа

Получение и изучение свойств этилена. Цель работы: получить этилен и провести опыты, характеризующие его свойства. Оборудование и реактивы: спиртовка, спички, лабораторный штатив, винт, лапка, пробка с газоотводной трубкой, штатив с пробирками, фильтровальная бумага; этанол, речной песок, концентрированная серная кислота, раствор перманганата калия. Порядок выполнения работы. З а д а н и е 1. Получение этилена. В целях безопасности работы с концентрированными веществами учителем заранее приготавливается смесь, состоящую из 2-3 мл этилового спирта и 6-9 мл концентрированной серной кислоты. Для того, чтобы избежать толчков жидкости при кипении, в смесь добавляется прокалённый речной песок. Закройте пробирку пробкой с газоотводной трубкой, закрепите её в штативе (см. рис. 1). Осторожно нагрейте. З а д а н и е 2. Химические свойства этилена. 1. Опустите конец газоотводной трубки поочерёдно в пробирку с раствором перманганата калия (ниже уровня раствора) (см. рис 1) и в пробирку с раствором брома. Что происходит с раствором перманганата калия? Что происходит с раствором брома? Сделайте вывод о непредельном характере этилена. 2. Протрите конец газоотводной трубки фильтровальной бумагой, поверните трубку вверх и подожгите выделяющийся этилен. Каким пламенем горит этилен: светящимся, несветящимся или коптящим? Почему? Приложение 4 Рис. 1 Получение этилена и изучение его свойств.

Рис. 1 Получение этилена и изучение его свойств.
Слайд 28

Рис. 1 Получение этилена и изучение его свойств.

Интересно…. Великое удивление старого отшельника Многим памятна необыкновенная история семейства Лыковых, которое по религиозным мотивам удалилось от человеческого общества в глухую тайгу и прожило там, не видя людей, с 1936 года до начала 80-х г.г.. К этому стоит добавить, что глава семейства Карп
Слайд 29

Интересно…

Великое удивление старого отшельника Многим памятна необыкновенная история семейства Лыковых, которое по религиозным мотивам удалилось от человеческого общества в глухую тайгу и прожило там, не видя людей, с 1936 года до начала 80-х г.г.. К этому стоит добавить, что глава семейства Карп Осипович Лыков и до отшельничества от самого рождения жил на староверческой заимке, с широким миром не общаясь. И вот – встреча с людьми! Много поразительных достижений вошло в человеческий обиход за эти долгие десятилетия, но что всё-таки более всего поразило старого отшельника? Журналист «Комсомольской правды» В. Песков, который рассказывал об этой семье на страницах газеты, отметил: «Из всего, что могло его поразить , на первое место надо поставить не электричество, не самолёт…не приёмник, из которого слышался «бабий греховный глас» Пугачёвой, поразил больше всего прозрачный пакет из полиэтилена. «Господи, что измыслили – стекло, а мнётся!» Пожалуй, выбор объекта для удивления нас, нынешних, разочарует. А между тем, всё дело в том, что мы, избалованные дети цивилизации, легко привыкаем к самым удивительным вещам. Стоит добавить, что в год, когда семья Лыковых ушла в тайгу, полиэтилена не только не было в помине, но даже сама принципиальная возможность его получения ставилась под сомнение

О полиэтилене…. Полиэтилен – довольно «старый» пластик. Исследователи фирмы JCJ в 1933 году подвергли сжатию под высоким давлением этилена в аппарате, полученном из Голландии. Они хотели изучить свойства этилена при высоком давлении, но вместо этого этилен заполимеризовался в полиэтилен. К сожалению
Слайд 30

О полиэтилене…

Полиэтилен – довольно «старый» пластик. Исследователи фирмы JCJ в 1933 году подвергли сжатию под высоким давлением этилена в аппарате, полученном из Голландии. Они хотели изучить свойства этилена при высоком давлении, но вместо этого этилен заполимеризовался в полиэтилен. К сожалению, процесс полимеризации плохо воспроизводился; иногда полиэтилен получался; а иногда – нет. Тщательные исследования позволили обнаружить в реакционной камере очень маленькие трещинки. Они пропускали ровно столько воздуха, сколько надо, чтобы в камере началась полимеризация – благодаря содержащемуся в воздухе кислороду. Понадобилось много усилий, чтобы разработать промышленный процесс полимеризации этилена: если кислорода было слишком мало, полимеризация не шла, а если слишком много – вся установка взлетала на воздух. Многие историки считают, что успех во Второй мировой войне частично принадлежит полиэтилену. Этот пластик является чудесным изолятором для высокочастотных устройств. Такой материал был крайне необходим при конструировании только что изобретённых радаров, благодаря которым можно было следить за курсом немецких бомбардировщиков и поднимать по тревоге истребители. Без полиэтилена не было бы радаров, без радаров не было бы заблаговременного сигнала воздушной тревоги, не было бы успешной обороны.

Этилен – вредитель Во многих странах большое количество урожая пропадает из-за увядания плодов. Например, в США количество увядших, а значит, пропавших фруктов, составляет четверть всего урожая. Причина этого состоит в том, что фрукты при созревании выделяют газ этилен, который способствует их созре
Слайд 31

Этилен – вредитель Во многих странах большое количество урожая пропадает из-за увядания плодов. Например, в США количество увядших, а значит, пропавших фруктов, составляет четверть всего урожая. Причина этого состоит в том, что фрукты при созревании выделяют газ этилен, который способствует их созреванию. Когда этого газа становится больше определённого количества, процесс созревания намного ускоряется как на дереве, так и в хранилище. Быстро созревший, а возможно, и уже увядший плод приводит к быстрому созреванию и даже к порче (к увяданию) всего урожая. Американские фермеры, спасая урожай от порчи, пользуются созданным несколько лет назад устройством. Оно представляет собой картридж, заполненный перманганатом калия, который поглощает этилен и предотвращает процесс увядания плодов.

Решите задачу. Найдите молекулярную формулу углеводорода, массовая доля углерода в котором составляет 85,7 %. Относительная плотность этого углеводорода по азоту равна 2. При сжигании углеводорода массой 0,7 г образовались оксида углерода (IV) и вода количеством вещества по 0,05 моль каждое. Относит
Слайд 32

Решите задачу

Найдите молекулярную формулу углеводорода, массовая доля углерода в котором составляет 85,7 %. Относительная плотность этого углеводорода по азоту равна 2. При сжигании углеводорода массой 0,7 г образовались оксида углерода (IV) и вода количеством вещества по 0,05 моль каждое. Относительная плотность паров этого вещества по азоту равна 2,5. Найдите молекулярную формулу алкена. При сжигании углеводорода массой 11,2 г получили 35,2 г оксида углерода (IV) и 14,4 г воды. Относительная плотность углеводорода по воздуху 1,93. Найдите молекулярную формулу вещества.

Проверь. М(СхНY)=56 г/моль m(СхНY)=56 г m(С)=48 г m(Н)=8 г x : y = = 4 : 8 Ответ: С4Н8. М(СхНY)=70 г/моль n(Н)=0,1 моль n(С)=0,05 моль x : y = 0,05 : 0,1 = 1 : 2 Простейшая формула СН2 Истинная – С5Н10 Ответ: С5Н10. М(СхНY)=56 г/моль m(СхНY)=11,2 г n(СО2)= 0,8 моль n(Н2О)=0,8 моль n(С)= 0,8 моль n(Н
Слайд 33

Проверь

М(СхНY)=56 г/моль m(СхНY)=56 г m(С)=48 г m(Н)=8 г x : y = = 4 : 8 Ответ: С4Н8

М(СхНY)=70 г/моль n(Н)=0,1 моль n(С)=0,05 моль x : y = 0,05 : 0,1 = 1 : 2 Простейшая формула СН2 Истинная – С5Н10 Ответ: С5Н10

М(СхНY)=56 г/моль m(СхНY)=11,2 г n(СО2)= 0,8 моль n(Н2О)=0,8 моль n(С)= 0,8 моль n(Н)=1,6 моль x : y = 0,8 : 1,6 = 1 : 2 Простейшая формула СН2 Истинная – С4Н8 Ответ: С4Н8

Задача 2 Задача 3 Задача 1

Используя правило Марковникова, напишите уравнения следующих реакций присоединения: а) СН3-СН=СН2 + НСl  ? б) СН2=СН-СН2-СН3 + НBr  ? В) СН3-СН2-СН=СН2 + НОН  ?
Слайд 34

Используя правило Марковникова, напишите уравнения следующих реакций присоединения:

а) СН3-СН=СН2 + НСl  ? б) СН2=СН-СН2-СН3 + НBr  ? В) СН3-СН2-СН=СН2 + НОН  ?

Проверь: Ответы: а) СН3-СН=СН2 + НСl  СН3-СНCl-СН3 б) СН2=СН-СН2-СН3 + НBr  СН3-СНBr-СН2-СН3 в) СН3-СН2-СН=СН2 + НОН  СН3-СН2-СН-СН3 │ ОН
Слайд 35

Проверь:

Ответы: а) СН3-СН=СН2 + НСl  СН3-СНCl-СН3 б) СН2=СН-СН2-СН3 + НBr  СН3-СНBr-СН2-СН3 в) СН3-СН2-СН=СН2 + НОН  СН3-СН2-СН-СН3 │ ОН

Осуществить превращения: + КОН(спирт),t + НBr + Na СН3-(СН2)2-СН2Br  Х1  Х2  Х3
Слайд 36

Осуществить превращения:

+ КОН(спирт),t + НBr + Na СН3-(СН2)2-СН2Br  Х1  Х2  Х3

Ответы: Х1 бутен-1 Х2 2-бромбутан Х3 3,4-диметилгексан
Слайд 37

Ответы: Х1 бутен-1 Х2 2-бромбутан Х3 3,4-диметилгексан

СИНКВЕЙН. 1 строка – имя существительное (тема синквейна) 2 строка – два прилагательных (раскрывающие тему синквейна) 3 строка – три глагола (описывают действия) 4 строка – фраза или предложение (высказывают своё отношение к теме) 5 строка – синоним (слово-резюме)
Слайд 38

СИНКВЕЙН

1 строка – имя существительное (тема синквейна) 2 строка – два прилагательных (раскрывающие тему синквейна) 3 строка – три глагола (описывают действия) 4 строка – фраза или предложение (высказывают своё отношение к теме) 5 строка – синоним (слово-резюме)

Этилен Ненасыщенный, активный Горит, обесцвечивает, присоединяет Этилен – представитель непредельных углеводородов Алкен
Слайд 39

Этилен Ненасыщенный, активный Горит, обесцвечивает, присоединяет Этилен – представитель непредельных углеводородов Алкен

ДОМАШНЕЕ ЗАДАНИЕ. Оценка «3»: параграф 4, ТПО стр. 24-25, № 5-7 Оценка «4»: Хомченко И.Г.: 20.21 Оценка «5»: Составить цепочку превращений, используя материал по темам «Алканы» и «Алкены»
Слайд 40

ДОМАШНЕЕ ЗАДАНИЕ

Оценка «3»: параграф 4, ТПО стр. 24-25, № 5-7 Оценка «4»: Хомченко И.Г.: 20.21 Оценка «5»: Составить цепочку превращений, используя материал по темам «Алканы» и «Алкены»

СПАСИБО ЗА РАБОТУ!
Слайд 41

СПАСИБО ЗА РАБОТУ!

Список похожих презентаций

Предельные углеводороды химия

Предельные углеводороды химия

Органическая химия – это раздел химической науки, в котором изучаются соединения углерода и их превращения. В наши дни к органическим веществам относятся ...
Предельные углеводороды

Предельные углеводороды

Классификация органических веществ. УГЛЕВОДОРОДЫ – это вещества, состоящие только из углерода и водорода. Определение предельных углеводородов (ПУВ). ...
Ароматические углеводороды, арены, бензол

Ароматические углеводороды, арены, бензол

Общая характеристика класса:. Ароматическими углеводородами называются соединения, молекулы которых содержат устойчивые циклические структуры- бензольные ...
Предельные углеводороды

Предельные углеводороды

Определение. Предельные углеводороды - это органические вещества, состоящие только из углерода и водорода, соответствующие общей формуле Сn Н2n +2. ...
Предельные углеводороды (алканы, или парафины)

Предельные углеводороды (алканы, или парафины)

Алканы – название предельных углеводородов по международной номенклатуре Междунаро́дный сою́з теорети́ческой и прикладно́й хи́мии (ИЮПАК, International ...
Ароматические углеводороды

Ароматические углеводороды

Познакомиться с классом ароматических углеводородов. Изучить представителей этого класса. Знать их отличительные свойства. Знать области их применения. ...
Предельные углеводороды

Предельные углеводороды

Цели урока: Научить учащихся выводить формулу вещества по его относительной плотности и массовым долям элементов, выводить формулу вещества по его ...
Непредельные углеводороды

Непредельные углеводороды

Непредельные УГЛЕВОДОРОДЫ. Алкены Алкадиены Алкины. Цель викторины:. Повторить, закрепить и проверить материал по теме: «Непредельные углеводороды», ...
Диеновые углеводороды

Диеновые углеводороды

« Мало знать, надо и применять. Мало хотеть, надо и делать.» И.В.Гёте. «3» Лимон 1. Какие углеводороды называют диеновыми? 2. Перечислите качественные ...
Насыщенные углеводороды

Насыщенные углеводороды

Определение. Алканы- это углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле CnH2n+2. Строение. ...
Обобщение: предельные и непредельные углеводороды

Обобщение: предельные и непредельные углеводороды

Цели урока:. повторить, обобщить и закрепить полученные знания и умения по темам «Предельные и непредельные углеводороды» изучить генетическую связь ...
Непредельные углеводороды

Непредельные углеводороды

Почему этилен – газ, а полиэтилен – твёрдое вещество? Гипотеза: Свойства веществ определяются их строением. Проблема. Для того, чтобы выяснить, возможно ...
Ароматические углеводороды – арены. Бензол как представитель ароматических углеводородов

Ароматические углеводороды – арены. Бензол как представитель ароматических углеводородов

Бензол как представитель ароматических углеводородов. Задачи урока:. на примере бензола познакомиться с углеводородами, которые имеют замкнутые цепи ...
Предельные углеводороды

Предельные углеводороды

План урока. Понятие о углеводородах. 2.Предельные углеводороды. 3.Природные источники углеводородов. 4. Вопросы. Д/З § 33, В.3, 4. 1. Понятие о углеводородах. ...
Диеновые углеводороды

Диеновые углеводороды

I. Номенклатура и изомерия. Классификация. Непредельные соединения, содержащие в молекуле две двойные связи, называют диеновыми углеводородами. Их ...
Ароматические углеводороды

Ароматические углеводороды

Арены. Ароматическими углеводородами (аренами) называются вещества, в молекулах которых содержится одно или несколько бензольных колец — циклических ...
Углеводороды

Углеводороды

Цель урока: обобщить сведения об углеводородах. УЭ1 Обобщить знания по составу и классификации углеводородов, особенностях строения их молекул. Что ...
Углеводороды ароматического ряда

Углеводороды ароматического ряда

Какие углеводороды называются ароматическими? Ароматические углеводороды (арены) – это углеводороды с общей формулой СnH2n-6, в молекулах которых ...
Углеводороды ряда этилена

Углеводороды ряда этилена

Этилен. Углеводороды ряда этилена Цель урока. Повторить строение молекулы этилена, виды изомерии и номенклатуру алкенов, химические свойства этилена. ...
Углеводороды и их природные источники. Прородный газ

Углеводороды и их природные источники. Прородный газ

Углеводороды-это класс органических соединений,молекулы которых состоят только из углерода и водорода. Наиболее распространенными природными источниками ...

Конспекты

Углеводороды

Углеводороды

Пояснительная записка. Шаповалова Ирина Анатольевна. Учитель химии. МОУ «СОШ№11 с углубленным изучением иностранных языков». г.Ноябрьск, ЯНАО. ...
Углеводороды

Углеводороды

. МИНИСТЕРСТВО ОБРАЗОВАНИЯ ОМСКОЙ ОБЛАСТИ. Бюджетное образовательное учреждение. . начального профессионального образования. . «Профессиональное ...
Углеводороды

Углеводороды

Технологическая карта урока. Тема раздела:. Углеводороды. СМК раздела. Основные классы УВ: алканы, алкены, алкины, алкадиены, циклоалканы, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:7 января 2019
Категория:Химия
Содержит:41 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации