- Физика столкновений тяжелых ионов

Презентация "Физика столкновений тяжелых ионов" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "Физика столкновений тяжелых ионов" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

Физика столкновений тяжелых ионов Емельянов В. М. Московский инженерно-физический институт (государственный университет). VRVS MEETING
Слайд 1

Физика столкновений тяжелых ионов Емельянов В. М.

Московский инженерно-физический институт (государственный университет)

VRVS MEETING

Содержание Введение Фазовые переходы в сжатой и нагретой ядерной материи Пространственно-временная картина АА взаимодействий Уроки RHIC Столкновения тяжелых ионов на LHC Ультрапериферические столкновения на LHC Заключение
Слайд 2

Содержание Введение Фазовые переходы в сжатой и нагретой ядерной материи Пространственно-временная картина АА взаимодействий Уроки RHIC Столкновения тяжелых ионов на LHC Ультрапериферические столкновения на LHC Заключение

плотность энергии как функция температуры. фазовая диаграмма состояния адронной материи. Фазовые переходы в сжатой и нагретой ядерной материи
Слайд 3

плотность энергии как функция температуры

фазовая диаграмма состояния адронной материи

Фазовые переходы в сжатой и нагретой ядерной материи

Пространственно-временная картина ядро-ядерных взаимодействий. 197Au 197Au
Слайд 4

Пространственно-временная картина ядро-ядерных взаимодействий

197Au 197Au

Сигналы нового состояния вещества. Жесткие сигналы. мягкие (адроны) (коллективные течения, корреляции, выходы странных частиц). жесткие сигналы («реликтовое излучение») (e+e-, γ, γγ, струи, J/ψ подавление). 1. Дилептоны SPS RHIC. Вывод: новый механизм генерации дилептонов на ранней стадии (кварк-ант
Слайд 5

Сигналы нового состояния вещества

Жесткие сигналы

мягкие (адроны) (коллективные течения, корреляции, выходы странных частиц)

жесткие сигналы («реликтовое излучение») (e+e-, γ, γγ, струи, J/ψ подавление)

1. Дилептоны SPS RHIC

Вывод: новый механизм генерации дилептонов на ранней стадии (кварк-антикварковая аннигиляция, восстановление киральной симметрии)

прямые фотоны КГП на RHIC. D. d’Enterria, D. Perresounko nucl-th/0503054. thermal prompt DATA = prompt + thermal
Слайд 6

прямые фотоны КГП на RHIC

D. d’Enterria, D. Perresounko nucl-th/0503054

thermal prompt DATA = prompt + thermal

4. Струи qq → qq струя адронов. Струя в адронной среде. q g … AA pp — “jet quenching” — выход подавлен. — дебаевский радиус экранирования
Слайд 7

4. Струи qq → qq струя адронов

Струя в адронной среде

q g … AA pp — “jet quenching” — выход подавлен

— дебаевский радиус экранирования

Корреляция подавления J/ψ и увеличения выхода странных частиц
Слайд 8

Корреляция подавления J/ψ и увеличения выхода странных частиц

Струи в Au+Au и d+Au и p+p. нет подавления в p+p и d+Au. “in” и “out” струи подавляются по разному!
Слайд 9

Струи в Au+Au и d+Au и p+p

нет подавления в p+p и d+Au

“in” и “out” струи подавляются по разному!

Адронные пробники нового состояния вещества. Коллективное течение. — азимутальный угол. — коэффициент Фурье. b0.5) p
Слайд 10

Адронные пробники нового состояния вещества

Коллективное течение

— азимутальный угол

— коэффициент Фурье

b<7 fm (nch/nmax>0.5) p<1.5 ГэВ — гидродинамика

(отношение числа валентных кварков)

v2 описывается течением кварков и глюонов с очень малой вязкостью

гидродинамика

гидродинамика нарушена для

The ATLAS detector Length 44m Height 22m
Слайд 11

The ATLAS detector Length 44m Height 22m

ATLAS physics program. Global variable measurement dN/dη dET/dη elliptic flow azimuthal distributions Jet measurement and jet quenching Quarkonia suppression J/Ψ  p-A physics Ultra-Peripheral Collisions (UPC) Idea: take full advantage of the large calorimeter and μ-spectrometer. Direct information
Слайд 12

ATLAS physics program

Global variable measurement dN/dη dET/dη elliptic flow azimuthal distributions Jet measurement and jet quenching Quarkonia suppression J/Ψ  p-A physics Ultra-Peripheral Collisions (UPC) Idea: take full advantage of the large calorimeter and μ-spectrometer

Direct information from QGP

Acceptance
Слайд 13

Acceptance

A few key numbers and maybe a plot. ~ 8,000 collisions per second luminosity ~ 10^27 cm-2s-1 1 month is 10^6 seconds implies possible samping of 10^10 min bias and 10^9 central Pb-Pb events. 5 bbar per central event. Direct photons --> With central barrel in one month running for central events:
Слайд 14

A few key numbers and maybe a plot. ~ 8,000 collisions per second luminosity ~ 10^27 cm-2s-1 1 month is 10^6 seconds implies possible samping of 10^10 min bias and 10^9 central Pb-Pb events. 5 bbar per central event. Direct photons --> With central barrel in one month running for central events: 1e3 counts at 60 GeV in 1 GeV pt bin! Jets --> B Jets-->

ATLAS Physics Rates

Color screening prevents various ψ, , χ states to be formed when T→Ttrans to QGP (color screening length < size of resonance). Quarkonia suppression. Modification of the potential can be studied by a systematic measurement of heavy quarkonia states characterized by different binding energies and
Слайд 15

Color screening prevents various ψ, , χ states to be formed when T→Ttrans to QGP (color screening length < size of resonance)

Quarkonia suppression

Modification of the potential can be studied by a systematic measurement of heavy quarkonia states characterized by different binding energies and dissociation temperatures ~thermometer for the plasma

Upsilon family (1s) (2s) (3s) Binding energies (GeV) 1.1 0.54 0.2 Dissociation at the temperature ~2.5Ttrans ~0.9Ttrans ~0.7Ttrans =>Important to separate (1s) and (2s)

Ultraperipheral collisions. The two nuclei geometrically “miss” each other b > 2RA Ions are source of fields photons sgg ~ Z4 pomerons sgp ~ Z2A2 – for ‘heavy’ states sgp ~ Z2A5/3 - for lighter mesons Photon and pomeron can couple coherently to the nuclei if its have: Small transverse momentum: p
Слайд 16

Ultraperipheral collisions

The two nuclei geometrically “miss” each other b > 2RA Ions are source of fields photons sgg ~ Z4 pomerons sgp ~ Z2A2 – for ‘heavy’ states sgp ~ Z2A5/3 - for lighter mesons Photon and pomeron can couple coherently to the nuclei if its have: Small transverse momentum: pT < h/RA~ 90 MeV Maximum longitudinal component pL < gh/RA ~ 100 GeV

Pomeron carry the strong interaction but is colorless and it has the quantum number of the vacuum JP = 0++

Eγ ~ 3 (80) GeV at RHIC (LHC) Wγγ ~ 6 (160) GeV at RHIC (LHC)

Vector mesons production (photon-pomeron interaction). σ(AA->AAY) = 150 mb L = 4*1026 cm-2s-1, H = 0.06 Hz, Br(Y->mm) = 2.48% => ~1500 Y/month (month ~ 106 sec). Vector meson production r, w, F, J/Y ,Y
Слайд 17

Vector mesons production (photon-pomeron interaction)

σ(AA->AAY) = 150 mb L = 4*1026 cm-2s-1, H = 0.06 Hz, Br(Y->mm) = 2.48% => ~1500 Y/month (month ~ 106 sec)

Vector meson production r, w, F, J/Y ,Y

AuAu -> r0Au*Au* 200 GeV Signal region: pT
Слайд 18

AuAu -> r0Au*Au* 200 GeV Signal region: pT<0.15 GeV r0 Rapidity After detector simulation

1.7 million ZDC coincidence triggers in 2002 Require a 2 track vertex p+p+ and p-p- model background scaled up to 2 single (1n) and multiple (Xn) neutron production 1n mostly from Giant Dipole Resonance Cross section and rapidity distribution match soft Pomeron model

STAR Preliminary

Interference. 2 indistinguishable possibilities Interference!! 2-source interferometer with separation b r is negative parity For pp, AA parity transform -> s ~ |A1 - A2eip·b|2 At y=0 s=s0[1 - cos(pb)] For pbar p: CP transform -> s ~ |A1 + A2eip·b|2 b is unknown Reduction for pT
Слайд 19

Interference

2 indistinguishable possibilities Interference!! 2-source interferometer with separation b r is negative parity For pp, AA parity transform -> s ~ |A1 - A2eip·b|2 At y=0 s=s0[1 - cos(pb)] For pbar p: CP transform -> s ~ |A1 + A2eip·b|2 b is unknown Reduction for pT <<1/

r0 w/ mutual Coulomb dissoc. 0.1< |y| < 0.6

t (GeV/c)2 dN/dt int noint

Efficiency corrected t 1764 events total R(t) = Int(t)/Noint(t) Fit with polynomial dN/dt =A*exp(-bt)[1+c(R(t)-1)] A is overall normalization b is slope of nuclear form factor b = 301 +/- 14 GeV-2 304 +/- 15 GeV-2 syst. uncertainties: ±8(syst)±15%(theory) c=0 -- > no interference c=1 -- > “ful
Слайд 20

Efficiency corrected t 1764 events total R(t) = Int(t)/Noint(t) Fit with polynomial dN/dt =A*exp(-bt)[1+c(R(t)-1)] A is overall normalization b is slope of nuclear form factor b = 301 +/- 14 GeV-2 304 +/- 15 GeV-2 syst. uncertainties: ±8(syst)±15%(theory) c=0 -- > no interference c=1 -- > “full” interference Data and interference model match c = 1.01 +/- 0.08 0.78 +/- 0.13

Data (w/ fit) Noint Int t (GeV2) 0.1 < |y| < 0.5 0.5 < |y| < 1.0

Types of trigger. Topology trigger + ZDCs (r0 in TPC + signals in forward (zero degree calorimeters) Topology trigger + West ZDC: Au+d->rAu+pn required break up d Topology trigger + both ZDC: Au+Au->rAuAu+Xn Backgrounds peripheral hadronic events cosmic rays, beam gas interactions, pile-up. ZD
Слайд 21

Types of trigger

Topology trigger + ZDCs (r0 in TPC + signals in forward (zero degree calorimeters) Topology trigger + West ZDC: Au+d->rAu+pn required break up d Topology trigger + both ZDC: Au+Au->rAuAu+Xn Backgrounds peripheral hadronic events cosmic rays, beam gas interactions, pile-up

ZDC-West ZDC-East CTB-topology

Y–> μ+μ- (CombinedMuon) MUID |eta|
Слайд 22

Y–> μ+μ- (CombinedMuon) MUID |eta|<2.5 530 Y/month

Plans on LHC: ALICE, ATLAS Cross-section,rate: ALICE ATLAS g+A->J/Y, Y+A in UPC A+A
Слайд 23

Plans on LHC: ALICE, ATLAS Cross-section,rate: ALICE ATLAS g+A->J/Y, Y+A in UPC A+A

Список похожих презентаций

Физика на кухне

Физика на кухне

Цель:. Формирование познавательного интереса к физике, выявление знаний и умений учащихся по теме, обобщение и закрепление знаний и умений, которые ...
Физика света

Физика света

Закон прямолинейного распространения света. Закрытый ящик с отверстием для получения изображений на одной из стенок называется камерой – обскурой ...
Физика и экология

Физика и экология

Среди глобальных, жизненно важных проблем, стоящих перед человечеством, первостепенное значение приобрела в наши дни проблема экологии. Причинами ...
Физика Линзы

Физика Линзы

1. Собирающая линза, используемая в качестве лупы, дает. А – действительное увеличенное изображение Б – действительное уменьшенное изображение В – ...
Физика и игрушки

Физика и игрушки

Плавающие игрушки. Наша Таня громко плачет: уронила в речку мячик, Тише, Танечка, не плачь, Не утонет в речке мяч. Заводные игрушки. Вы игрушки эти ...
Физика и познание мира

Физика и познание мира

Коротко о главном…. И кто возьмет на себя поставить предел человеческому духу? Кто решится утверждать, что мы знаем все, что может быть познано в ...
Опорные конспекты. Физика 10-11 класс

Опорные конспекты. Физика 10-11 класс

МЕХАНИЧЕСКОЕ ДВИЖЕНИЕ. – изменение положения тела относительно … Кинематика Динамика Статика (где? когда?) (почему?) (равновесие) Описывают движение: ...
Физика звука

Физика звука

Пытаются шептать клочки афиш, Пытается кричать железо крыш, И в трубах петь пытается вода, И так мычат бессильно провода... К.Я.Ваншенкин. ОСНОВОПОЛАГАЮЩИЙ ...
Здравствуй, Физика

Здравствуй, Физика

МЕХАНИКА ЭЛЕКТРОДИНАМИКА ТЕРМОДИНАМИКА. . Галилей Галилео (1564—1642.) Итальянский ученый. Открыл принцип работы маятника и показал влияние силы притяжения ...
М.В. Ломоносов и Физика

М.В. Ломоносов и Физика

Михаил Васильевич Ломоносов родился 8 ноября (19 — по новому стилю) 1711 г. в деревне Мишанинской, что расположена была на Курострове в нескольких ...
Вселенная Физика

Вселенная Физика

Правила Викторины. Класс делится на 4 команды. Капитан выбирает вопрос. На обсуждение команде даётся 1 минута. Один из членов команды отвечает на ...
Влияние имплантации ионов фосфора на структурные изменения в поверхностных слоях монокристалла кремния

Влияние имплантации ионов фосфора на структурные изменения в поверхностных слоях монокристалла кремния

Цель работы. Исследование структурных изменений в приповерхностных слоях монокристаллов Si после имплантации ионов фосфора. Энергия имплантованных ...
8 Вязкость, число Рейнольдса, Физика дождя, Капилярные явления

8 Вязкость, число Рейнольдса, Физика дождя, Капилярные явления

Движение жидкости. Пусть над слоем ∆S скорость больше и верхний слой 1 пытается увлечь нижний 2 и сила внутреннего трения действует на слой 2 с силой ...
Физика вокруг нас

Физика вокруг нас

Физика вокруг нас. Световые явления. Тепловые явления. Магнитные явления. Электрические явления. Механические явления. Звуковые явления. Агрегатные ...
Путешествие в страну "Физика"

Путешествие в страну "Физика"

1тур Представление команд. Максимальная оценка – 5 баллов. 2 тур Решите задачу: Какое расстояние пройдут ваши корабли за время игры? Время – 3 минуты ...
Физика для всех

Физика для всех

. »: 2. герой Даниэля Дефо «Робинзон Крузо». 3. «Засели необитаемый остров». 4. “Нешкольные задачи по физике”. 5. РЕКЛАМА 6. В 1682 г. известный английский ...
Физика

Физика

. Завод по производству газированных напитков. Очистка воды для производства. Процесс изготовления. Основные компоненты. . Упаковка продукции. Перевозка. ...
Физика и живая природа

Физика и живая природа

«от животных мы путём подражания научились важнейшим делам». Демокрит. 1 страница "Удивительное рядом". Различные скорости животных. Меч-рыба - 130 ...
Физика

Физика

Качественная задача по физике – задача, которая решается путём логических умозаключений, основанных на законах физики, построения чертежа, рисунка, ...
Физика и лирика

Физика и лирика

Дул ветер из последних сил, И град хлестал, и ливень лил, И вспышки молний тьма глотала, И небо долго грохотало... Роберт Бернс “Тем О’Шентер”. Ф.И.Тютчев ...

Конспекты

Физика, Физические явления

Физика, Физические явления

Разработка первого урока физики 7 класс. . Учитель физики МОУ «СОШ № 21» г. Салават, Р. Башкортостан. О.Я. Сизёнова. Урок № 1 -1. Тема:. . Физика ...
Физические термины и понятия. Физика и техника. Физика в современном мире

Физические термины и понятия. Физика и техника. Физика в современном мире

Луневская Виктория Брониславовна. . Предмет:. физика Дата. __________________. Тема:. «Физические термины и понятия. Физика и техника. Физика ...
Физика и человек

Физика и человек

Муниципальное бюджетное общеобразовательное учреждение. с. Сергиевка. . Проект по физике. Разработала:. учитель физики: В.Н.Калугина. ...
Физика повсюду

Физика повсюду

Игра-соревнование. «Физика повсюду». 7 – 9 классы. Пояснительная записка:. В игре ...
Физика и преступления

Физика и преступления

Разработка внеклассного мероприятия по физике Мокеевой Т.Ю. . . «Физика и преступления». Цель:. 1. Совершить несколько «открытий» вместе с великим ...
Физика и техника

Физика и техника

Муниципальное общеобразовательное учреждение. «Разуменская средняя общеобразовательная школа №2». Белгородского района Белгордской области. ...
Физика вокруг нас

Физика вокруг нас

Конкурсная программа интеллектуального марафона. . «Физика вокруг нас» разработана для учащихся 9-11 классов. Цель: - расширение знаний законов ...
Физика и музыка

Физика и музыка

11 класс. Механические волны. Физика и музыка. . Муниципальное казенное общеобразовательное учреждение. «Средняя общеобразовательная школа № ...
Физика в спорте

Физика в спорте

ПЛАН-КОНСПЕКТ УРОКА. Тема «Физика в спорте». Учитель: Алентова Марина Александровна. Место работы: «Ломоносовская школа №5». Должность : Учитель ...
Физика вокруг нас

Физика вокруг нас

Урок физики 8 класс. Игнатова Евгения Савельевна. Учитель физики муниципального общеобразовательного учреждения средней общеобразовательной школы ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Физика
Автор презентации:Емельянов В.М.
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации