- Теория вечной Вселенной и Большого взрыва

Презентация "Теория вечной Вселенной и Большого взрыва" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9

Презентацию на тему "Теория вечной Вселенной и Большого взрыва" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 9 слайд(ов).

Слайды презентации

Теория Вечной Вселенной
Слайд 1

Теория Вечной Вселенной

Как известно, в звездах идет ядерное сгорание водорода с превращением его в гелий. Не рассматривая здесь других ядерных реакций, которые могут протекать в недрах звезд, скажем, что синтез гелия из водорода является главнейшим источником энергии во Вселенной из числа известных. Возникает вопрос о том
Слайд 2

Как известно, в звездах идет ядерное сгорание водорода с превращением его в гелий. Не рассматривая здесь других ядерных реакций, которые могут протекать в недрах звезд, скажем, что синтез гелия из водорода является главнейшим источником энергии во Вселенной из числа известных. Возникает вопрос о том, есть ли предел горючему - водороду, насколько долго хватит его? По одной из версий, опирающихся на философские измышления о постоянстве и вечности Вселенной, где-то во Вселенной существуют источники образования водорода, по сути, из ничего. Философские принципы нередко перекликаются с научными. Но одна из главных опор современной научной мысли - законы сохранения - не позволяют большинству ученых принять эту модель вечной Вселенной. Идея о возможности появления чего-то из ничего противоречит научным принципам.

Теория Большого Взрыва
Слайд 3

Теория Большого Взрыва

Опираясь на научные данные почти все современные астрономы полагают, что начало Вселенной положил так называемый Большой взрыв. Все вещество Вселенной перед Взрывом находилось в шаре микроскопических размеров и чудовищной плотности и температуры. Размеры зародыша сопоставляют с размерами атомного яд
Слайд 4

Опираясь на научные данные почти все современные астрономы полагают, что начало Вселенной положил так называемый Большой взрыв. Все вещество Вселенной перед Взрывом находилось в шаре микроскопических размеров и чудовищной плотности и температуры. Размеры зародыша сопоставляют с размерами атомного ядра, а это 10-15 метра. Появление этого зародыша, во-первых, окутано научными спорами и тайнами, а во-вторых, послужило началом взрыва. До самого взрыва не существовало ни вещества, ни времени, ни пространства. События в первую секунду протекали весьма стремительно. Образовались частицы вещества, называемые кварками и антикваркми, и излучение (фотоны). В течение той же секунды из кварков и антикварков образовались протоны, антипротоны и нейтроны.

Антипротоны и протоны. Антипротон отличается от протона противоположным зарядом, а в остальном эти частицы являются почти тождественными. При столкновении протона и антипротона происходит реакция аннигиляции, в ходе которой обе частицы исчезают, превращаясь в излучение (фотоны). Также возможны ядерн
Слайд 5

Антипротоны и протоны

Антипротон отличается от протона противоположным зарядом, а в остальном эти частицы являются почти тождественными. При столкновении протона и антипротона происходит реакция аннигиляции, в ходе которой обе частицы исчезают, превращаясь в излучение (фотоны). Также возможны ядерные реакции обратные реакции аннигиляции, когда из фотонов образуется пара протон-антипротон.

После образования протонов, антипротонов и нейтронов стали частыми реакции аннигиляции, так как вещество новорожденной Вселенной было очень плотно, частицы постоянно между собою сталкивались. Во Вселенной преобладало излучение.
Слайд 6

После образования протонов, антипротонов и нейтронов стали частыми реакции аннигиляции, так как вещество новорожденной Вселенной было очень плотно, частицы постоянно между собою сталкивались. Во Вселенной преобладало излучение.

Первые секунды. К исходу первой секунды, когда температура Вселенной упала до 10 млрд. градусов, образовались и некоторые другие элементарные частицы, в том числе электрон и парная ему античастица - позитрон. К тому же временному рубежу большая часть частиц аннигилировала. Так вышло, что частиц веще
Слайд 7

Первые секунды

К исходу первой секунды, когда температура Вселенной упала до 10 млрд. градусов, образовались и некоторые другие элементарные частицы, в том числе электрон и парная ему античастица - позитрон. К тому же временному рубежу большая часть частиц аннигилировала. Так вышло, что частиц вещества было на ничтожную долю процента больше, чем частиц антивещества. Этот факт до сих пор нуждается в объяснении. Но так или иначе, наша Вселенная состоит из вещества, а не из антивещества.

Третья минута. К третьей минуте из четверти всех протонов и нейтронов образовались ядра гелия. Через несколько сот тысяч лет расширяющаяся Вселенная остыла настолько, что ядра гелия и протоны смогли удерживать возле себя электроны. Так образовались атомы гелия и водорода. Излучение, не сдерживаемое
Слайд 8

Третья минута

К третьей минуте из четверти всех протонов и нейтронов образовались ядра гелия. Через несколько сот тысяч лет расширяющаяся Вселенная остыла настолько, что ядра гелия и протоны смогли удерживать возле себя электроны. Так образовались атомы гелия и водорода. Излучение, не сдерживаемое свободными электронами, смогло распространяться на значительные расстояния. Мы до сих пор можем на Земле "слышать" отголоски того излучения. Оно равномерно приходит со всех сторон и, значительно "остыв" за 15 миллиардов лет с момента Взрыва, соответствует излучению тела, нагретого всего до 3 К. Это излучение принято называть реликтовым. Его обнаружение и существование подтверждают теорию Большого взрыва. Излучение является микроволновым.

Уплотнения и появление галактик. При расширении однородной Вселенной в тех или иных ее местах образовывались случайные сгущения. Но именно эти "случайности" стали зачатками больших уплотнений и центрами концентрации вещества. Так во Вселенной образовались области, где вещество собиралось,
Слайд 9

Уплотнения и появление галактик

При расширении однородной Вселенной в тех или иных ее местах образовывались случайные сгущения. Но именно эти "случайности" стали зачатками больших уплотнений и центрами концентрации вещества. Так во Вселенной образовались области, где вещество собиралось, и области, где его почти не было. Кому-то такая Вселенная напоминает соты, кому-то - губку. Под воздействием гравитации появившиеся уплотнения росли. Двадцать миллиардов лет назад в местах таких уплотнений стали образовываться галактики, скопления и сверхскопления галактик.

Список похожих презентаций

Теория большого взрыва

Теория большого взрыва

ПРОЛОГ. "Мы надеемся уложить все мироздание в простую и короткую формулу, которую можно будет печатать на майках". Л.Лердман. Основные задачи космологии ...
Теория электромагнитного поля

Теория электромагнитного поля

Содержание. Пояснительная записка. Цели и задачи раздела. Психолого - педагогическое объяснение специфики восприятия и освоения учебного материала ...
Теория электролитической диссоциации

Теория электролитической диссоциации

19.02.1859 г. – 02.10.1927 г. Сванте Аррениус. Шведский ученый, лауреат Нобелевской премии мира по химии в 1903 году. Автор теории электролитической ...
Теория Хиппеля-Каллена

Теория Хиппеля-Каллена

Содержание. Суть теории Хиппеля. Кратко. Основные заключения теории. Первое доказательство теории Хиппеля. Второе доказательство теории Хиппеля. Теория ...
Теория струн и квантовая хромодинамика

Теория струн и квантовая хромодинамика

Что мы знаем о КХД. Теория сильных взаимодействий, совместная с доступными экспериментальными данными В области высоких энергий в силу асимптотической ...
Теория реактивного движения

Теория реактивного движения

Цели работы. Рассмотреть реактивный способ движения на основе закона сохранения импульса Задачи: Проследить историю развития ракетной техники и изобретение ...
Теория относительности Эйнштейна

Теория относительности Эйнштейна

Краткая аннотация и инструкция по работе с программой. В данной работе рассказывается о теории относительности Эйнштейна, описываются постулаты и ...
Теория относительности и релятивистской механики

Теория относительности и релятивистской механики

Силы взаимодействия между материальными точками зависят от их относительных скоростей и расстояний между ними, которые не изменяются при преобразованиях ...
Теория вероятностей. Треугольник Паскаля

Теория вероятностей. Треугольник Паскаля

Хочешь быть умным, научись разумно спрашивать, внимательно слушать, спокойно отвечать и переставать говорить, когда нечего сказать. И. ЛАФАТЕР. Содержание. ...
Теория вероятностей. Комбинаторика. Комбинаторные методы решения задач

Теория вероятностей. Комбинаторика. Комбинаторные методы решения задач

Цель урока: Выработать умение решать задачи на определение классической вероятности с использованием основных формул комбинаторики. Оборудование: ...
Теория безэлектродного пробоя Зинера

Теория безэлектродного пробоя Зинера

Согласно теории Зинера в сильном электрическом поле энергетические зоны в кристалле претерпевают изменения, как показано на рис. 3.1. В соответствии ...
Теория атома Бора

Теория атома Бора

Недостатки модели Резерфорда:. § 8.2. Линейчатый спектр атома водорода. ультрафиолетовая область : серия Лаймана m=1 n=2,3,4,5, видимая область спектра ...
Теория А. Геманта

Теория А. Геманта

Введение. В теории А.Геманта рассматривается пробой жидкого диэлектрика, содержащего влагу в виде эмульсии. Согласно расчётам Геманта под действием ...
Ионизирующие излучения ядерного взрыва

Ионизирующие излучения ядерного взрыва

д.т.н. Улимов В.Н. Пицунда-2008. . . . . . . . . . . . . . . ...
Закон инерции- первый закон Ньютона. Место человека во Вселенной

Закон инерции- первый закон Ньютона. Место человека во Вселенной

Цели урока:. Дать понятия: инерции, инерциальных систем отсчета, закона инерции, принципа относительности Галилея Дать понятие о развитии представления ...
Теория гибридизации

Теория гибридизации

Теория гибридизации. Лайнус Полинг. Лаунус Полинг – американский химик, физик (1901-94 гг) Первые исследования по применению квантовой механики к ...
Теория относительности и Альберт Эйнштейн

Теория относительности и Альберт Эйнштейн

Альберт Эйнштейн (1879–1955). Кратко об Эйнштейне. Альберт Эйнштейн родился в 1879 г. В 1900 г. окончил Цюрихский политехнический институт. В 1902 ...
Теория дисперсии света

Теория дисперсии света

Пояснительная записка. Урок по теме «Дисперсия света» проходит следующим образом: Учебная группа делится на команды: I команда – «Историки». Члены ...
Теория относительности Эйнштейна

Теория относительности Эйнштейна

Задумываясь, какое именно событие все-таки знаменовало зарождение современной науки, я нередко останавливаю свой выбор на одном малоизвестном событии, ...
Теория кристаллического поля

Теория кристаллического поля

d-орбитали. Локализация, орбитали простираются в пространстве. Сильнее взаимодействуют с лигандами. f - орбитали. Общие положения ТКП. Теория кристаллического ...

Конспекты

Фотоэффект. Теория фотоэффекта

Фотоэффект. Теория фотоэффекта

Урок 57. Фотоэффект. Теория фотоэффекта. Цель:. дать понятие явления фотоэффекта; рассмотреть зарождение новой КВАНТОВОЙ ФИЗИКИ и ее влияние ...
Образование электромагнитных волн. Теория Максвелла

Образование электромагнитных волн. Теория Максвелла

Разработка уроков. Образование электромагнитных волн. Теория Максвелла. Тема. . Образование электромагнитных волн. Теория Максвелла. Тип:. сообщение ...
Фотоэффект. Теория фотоэффекта

Фотоэффект. Теория фотоэффекта

Урок 57. Фотоэффект. Теория фотоэффекта. 11 класс. Разработали: Самойлова Л.И. учитель физики МОКУ «Покровская средняя школа». Никулина О.И. учитель ...
Большой взрыв. Основные этапы эволюции Вселенной

Большой взрыв. Основные этапы эволюции Вселенной

. Предмет физика. 11 кл. Тема:. Большой взрыв. Основные этапы эволюции Вселенной. . . Цель:. Обучающая :. познакомить учащихся. с понятием ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Физика
Автор презентации:Арина
Содержит:9 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации