- Теория относительности и релятивистской механики

Презентация "Теория относительности и релятивистской механики" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10

Презентацию на тему "Теория относительности и релятивистской механики" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Основы специальной теории относительности и релятивистской механики. Мы установили, что в ньютоновской кинематике справедливы преобразования Галилея: , , . и нерелятивистский закон сложения скоростей: . Дифференцируя этот закон по времени, считая постоянной, получим: , (1.45) т. е. ускорение инвариа
Слайд 1

Основы специальной теории относительности и релятивистской механики

Мы установили, что в ньютоновской кинематике справедливы преобразования Галилея: , , . и нерелятивистский закон сложения скоростей: . Дифференцируя этот закон по времени, считая постоянной, получим: , (1.45) т. е. ускорение инвариантно (неизменно) относительно преобразований Галилея. Если система инерциальна, в ней ускорение свободного тела равно нулю. Равенство (1.45) показывает, что движение свободного тела в системе тоже происходит с нулевым ускорением, следовательно и система , движущаяся относительно равномерно и прямолинейно, также является инерциальной.

Силы взаимодействия между материальными точками зависят от их относительных скоростей и расстояний между ними, которые не изменяются при преобразованиях Галилея. Таким образом, сила, как и ускорение инвариантна относительно преобразований Галилея и второй, а также и третий законы Ньютона имеют во вс
Слайд 2

Силы взаимодействия между материальными точками зависят от их относительных скоростей и расстояний между ними, которые не изменяются при преобразованиях Галилея. Таким образом, сила, как и ускорение инвариантна относительно преобразований Галилея и второй, а также и третий законы Ньютона имеют во всех инерциальных системах отсчета одинаковый вид. Это утверждение называется принципом относительности Галилея.

Опыт показывает, что это утверждение можно распространить на все явления природы: все инерциальные системы отсчета движутся относительно друг друга с постоянными скоростями и никакие эксперименты, проведенные в одной инерциальной системе отсчета, не дают возможности отличить ее от другой, законы при
Слайд 3

Опыт показывает, что это утверждение можно распространить на все явления природы: все инерциальные системы отсчета движутся относительно друг друга с постоянными скоростями и никакие эксперименты, проведенные в одной инерциальной системе отсчета, не дают возможности отличить ее от другой, законы природы одинаковы во всех инерциальных системах отсчета. Это утверждение называется принципом относительности Эйнштейна и является одним из постулатов специальной теории относительности.

Добавим к координатным осям системы отсчета ось времени, располагая эту ось перпендикулярно координатным осям. В результате получим пространственно-временную диаграмму, точки на которой называются событиями. В общем случае пространственно-временная диаграмма имеет три пространственные и одну временн
Слайд 4

Добавим к координатным осям системы отсчета ось времени, располагая эту ось перпендикулярно координатным осям. В результате получим пространственно-временную диаграмму, точки на которой называются событиями. В общем случае пространственно-временная диаграмма имеет три пространственные и одну временную ось и является четырехмерной, но в случае одномерного движения можно ограничиться только одной пространственной осью (осью х), и диаграмма оказывается двумерной. Движущееся тело изображается на пространственно-временной диаграмме линией, которая называется мировой линией тела.

Мировая линия тела, движущегося равномерно и прямолинейно – прямая, а мировые линии неподвижных относительно друг друга тел параллельны (совмещаются параллельным переносом). Преобразование координат и времени – это способ вычислить время и координаты события в одной системе отсчета по времени и коор
Слайд 5

Мировая линия тела, движущегося равномерно и прямолинейно – прямая, а мировые линии неподвижных относительно друг друга тел параллельны (совмещаются параллельным переносом). Преобразование координат и времени – это способ вычислить время и координаты события в одной системе отсчета по времени и координатам этого же события в другой системе и по относительной скорости систем: .

Согласно принципу относительности Эйнштейна система тоже является инерциальной, и свободные тела в ней движутся равномерно и прямолинейно, как и в системе . Значит преобразование должно преобразовывать прямые мировые линии в прямые (а параллельные линии – в параллельные). Из математики известно, что
Слайд 6

Согласно принципу относительности Эйнштейна система тоже является инерциальной, и свободные тела в ней движутся равномерно и прямолинейно, как и в системе . Значит преобразование должно преобразовывать прямые мировые линии в прямые (а параллельные линии – в параллельные). Из математики известно, что преобразование с такими свойствами является линейным: ,

преобразования координат и времени, совместимые с принципом относительности (и изотропностью пространства) имеют вид: или , . (1.49) При эти преобразования переходят в преобразования Галилея, однако, на основе одного только принципа относительности мы не можем сделать никаких определенных заключений
Слайд 7

преобразования координат и времени, совместимые с принципом относительности (и изотропностью пространства) имеют вид: или , . (1.49) При эти преобразования переходят в преобразования Галилея, однако, на основе одного только принципа относительности мы не можем сделать никаких определенных заключений о значении величины .

Другим постулатом, лежащим в основе специальной теории относительности, является постулат о постоянстве скорости света: скорость света в вакууме не зависит от скорости источника или приемника света и одинакова во всех инерциальных системах отсчета. Этот постулат А. Эйнштейн предложил как обобщение м
Слайд 8

Другим постулатом, лежащим в основе специальной теории относительности, является постулат о постоянстве скорости света: скорость света в вакууме не зависит от скорости источника или приемника света и одинакова во всех инерциальных системах отсчета. Этот постулат А. Эйнштейн предложил как обобщение многочисленных и всегда дававших отрицательный результат опытов по определению зависимости скорости света от скоростей источника и приемника.

Из постулата о постоянстве скорости света следует, что если мировая линия короткого импульса света в системе имеет вид , то в системе ее вид , где - одинаковая в обеих системах отсчета скорость света. Такая ситуация несовместима с преобразованиями Галилея, однако для преобразований (1.49) она вполне
Слайд 9

Из постулата о постоянстве скорости света следует, что если мировая линия короткого импульса света в системе имеет вид , то в системе ее вид , где - одинаковая в обеих системах отсчета скорость света. Такая ситуация несовместима с преобразованиями Галилея, однако для преобразований (1.49) она вполне возможна, если положить в них . Действительно, взяв в (1.49) и , получим: , и . Таким образом, преобразования, удовлетворяющие одновременно и принципу относительности и постулату о постоянстве скорости света имеют вид: ,

Динамические законы Ньютона, а также основные следствия их, такие как закон сохранения импульса, оказываются неинвариантными относительно преобразований Лоренца. Более того, некоторые понятия классической механики, например действие на расстоянии или потенциальная энергия вообще невозможно непротиво
Слайд 10

Динамические законы Ньютона, а также основные следствия их, такие как закон сохранения импульса, оказываются неинвариантными относительно преобразований Лоренца. Более того, некоторые понятия классической механики, например действие на расстоянии или потенциальная энергия вообще невозможно непротиворечивым образом перенести в теорию относительности. Однако можно переопределить понятия импульса и энергии так, что законы сохранения этих величин станут инвариантными относительно преобразований Лоренца.

Список похожих презентаций

Специальная теория относительности

Специальная теория относительности

СТО. Специальная теория относительности (СТО) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных ...
Теория относительности и Альберт Эйнштейн

Теория относительности и Альберт Эйнштейн

Альберт Эйнштейн (1879–1955). Кратко об Эйнштейне. Альберт Эйнштейн родился в 1879 году. В 1900 году окончил Цюрихский политехнический институт. В ...
Теория относительности Эйнштейна

Теория относительности Эйнштейна

Краткая аннотация и инструкция по работе с программой. В данной работе рассказывается о теории относительности Эйнштейна, описываются постулаты и ...
Теория относительности Эйнштейна

Теория относительности Эйнштейна

Задумываясь, какое именно событие все-таки знаменовало зарождение современной науки, я нередко останавливаю свой выбор на одном малоизвестном событии, ...
Общая теория относительности Эйнштейна

Общая теория относительности Эйнштейна

Физика до теории относительности. Аристотель: движение – переход вещества в форму. Поведение тел определяется соотношением их составе «земли» и «огня». ...
Общая теория относительности

Общая теория относительности

Тема 9. ОСНОВНЫЕ ПОЛОЖЕНИЯ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (ОТО). 9.1. Обобщение закона тяготения Ньютона 9.2. Принцип эквивалентности сил инерции и ...
Теория относительности и Альберт Эйнштейн

Теория относительности и Альберт Эйнштейн

Альберт Эйнштейн (1879–1955). Кратко об Эйнштейне. Альберт Эйнштейн родился в 1879 г. В 1900 г. окончил Цюрихский политехнический институт. В 1902 ...
Теория относительности

Теория относительности

Наиболее существенное расхождение классической теории с корректно поставленным физическим экспериментом было впервые зафиксировано в 1881 г. в опыте ...
Теория относительности

Теория относительности

Содержание. 1.    Рождение теории 2.    Принцип относительности 3.    Преобразования Галилея 4.    Преобразования Лоренца 5.    Специальная теория относительности ...
Теория относительности 1

Теория относительности 1

ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ. Постулаты СТО. Кинематика СТО. Современная физика. Классическая физика. СТО. Цель:. Уточнить и углубить ...
Специальная теория относительности

Специальная теория относительности

Домашнее задание № 1. Г.Н. Степанова. Физика-11, ч.1 стр. 130 – Введение § 28 – знать: В чем проявляется относительность механического движения Принцип ...
Элементы квантовой механики

Элементы квантовой механики

§ 9.2. Уравнение Шредингера. Волновая функция. плотность вероятности:. условие нормировки вероятности:. Уравнение Шредингера для стационарных состояний. ...
Уравнение Шредингера. Элементы квантовой механики

Уравнение Шредингера. Элементы квантовой механики

Общее уравнение Шредингера. ШРЁДИНГЕР, ЭРВИН австрийский физик. Нобелевская премия по физике 1933 ( с П.Дираком). Стационарное уравнение Шредингера. ...
Теория электромагнитного поля

Теория электромагнитного поля

Содержание. Пояснительная записка. Цели и задачи раздела. Психолого - педагогическое объяснение специфики восприятия и освоения учебного материала ...
Теория электролитической диссоциации

Теория электролитической диссоциации

19.02.1859 г. – 02.10.1927 г. Сванте Аррениус. Шведский ученый, лауреат Нобелевской премии мира по химии в 1903 году. Автор теории электролитической ...
Теория Хиппеля-Каллена

Теория Хиппеля-Каллена

Содержание. Суть теории Хиппеля. Кратко. Основные заключения теории. Первое доказательство теории Хиппеля. Второе доказательство теории Хиппеля. Теория ...
Теория струн и квантовая хромодинамика

Теория струн и квантовая хромодинамика

Что мы знаем о КХД. Теория сильных взаимодействий, совместная с доступными экспериментальными данными В области высоких энергий в силу асимптотической ...
Основы теории относительности

Основы теории относительности

Содержание. Несостоятельность теории Галилея Теории учёных Постулаты теории относительности А.Эйнштейна Релятивистский закон сложения скоростей Относительность ...
Законы механики

Законы механики

Физика и реальность. Физика – это наука о природных явлениях. Физика изучает законы природы. Методы физики: наблюдение, эксперимент, теория, практика. ...
Элементы специальной теории относительности

Элементы специальной теории относительности

Согласно классическим представлениям о пространстве и времени, считавшимся на протяжении веков незыблемыми, движение не оказывает никакого влияния ...

Конспекты

Фотоэффект. Теория фотоэффекта

Фотоэффект. Теория фотоэффекта

Урок 57. Фотоэффект. Теория фотоэффекта. 11 класс. Разработали: Самойлова Л.И. учитель физики МОКУ «Покровская средняя школа». Никулина О.И. учитель ...
Фотоэффект. Теория фотоэффекта

Фотоэффект. Теория фотоэффекта

Урок 57. Фотоэффект. Теория фотоэффекта. Цель:. дать понятие явления фотоэффекта; рассмотреть зарождение новой КВАНТОВОЙ ФИЗИКИ и ее влияние ...
Принципы относительности Галилея. Первый закон Ньютона

Принципы относительности Галилея. Первый закон Ньютона

Автор:. Борисова Екатерина Сергеевна, преподаватель физики, информатики. Место работы:. ГООУ СПО «Мурманский строительный колледж им. Н.Е.Момота», ...
Третий закон Ньютона. Принцип относительности

Третий закон Ньютона. Принцип относительности

План №______. Класс 9. Тема:. Третий закон Ньютона. Принцип относительности. Тип урока:. комбинированный. Цели:. изучить третий закон Ньютона; ...
Принцип относительности Галилея. Законы Ньютона

Принцип относительности Галилея. Законы Ньютона

Урок физики. Тема:. Принцип относительности Галилея. Законы Ньютона. Цели:. 1. Сформулировать принцип относительности Галилея. Дать знания ...
Принцип относительности в механике. Постулаты теории относительности

Принцип относительности в механике. Постулаты теории относительности

Цуканова Наталья Рефатовна. Преподаватель физики, вторая категория. КГУ «Машиностроительный колледж города Петропавловска». Казахстан ,СКО,г.Петропавловск. ...
Основы механики

Основы механики

Игра. «Угадайка». по теме. «Основы механики». ( по принципу телевизионной игры «Угадай мелодию»). Правила игры:. 1,2 туры играются по нижеприведенным ...
Образование электромагнитных волн. Теория Максвелла

Образование электромагнитных волн. Теория Максвелла

Разработка уроков. Образование электромагнитных волн. Теория Максвелла. Тема. . Образование электромагнитных волн. Теория Максвелла. Тип:. сообщение ...
Задачи и вопросы по теории относительности

Задачи и вопросы по теории относительности

Задачи и вопросы по теории относительности. В небольшой, но содержательной теме по элементам специальной теории относительности у учителя нет возможностей ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.