- Специальная теория относительности

Презентация "Специальная теория относительности" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41

Презентацию на тему "Специальная теория относительности" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 41 слайд(ов).

Слайды презентации

Основы специальной теории относительности. © В.Е.Фрадкин, 2004. Из коллекции www.eduspb.com. 5klass.net
Слайд 1

Основы специальной теории относительности

© В.Е.Фрадкин, 2004

Из коллекции www.eduspb.com

5klass.net

Домашнее задание № 1. Г.Н. Степанова. Физика-11, ч.1 стр. 130 – Введение § 28 – знать: В чем проявляется относительность механического движения Принцип относительности Галилея Суть и принцип опыта Майкельсона Постулаты СТО § 29 – знать: Смысл и формулы для кинематических следствий СТО
Слайд 2

Домашнее задание № 1

Г.Н. Степанова. Физика-11, ч.1 стр. 130 – Введение § 28 – знать: В чем проявляется относительность механического движения Принцип относительности Галилея Суть и принцип опыта Майкельсона Постулаты СТО § 29 – знать: Смысл и формулы для кинематических следствий СТО

Специальная (или частная) теория относительности (СТО). представляет собой современную физическую теорию пространства и времени. Наряду с квантовой механикой, СТО служит теоретической базой современной физики и техники. СТО часто называют релятивистской теорией, а специфические явления, описываемые
Слайд 3

Специальная (или частная) теория относительности (СТО)

представляет собой современную физическую теорию пространства и времени. Наряду с квантовой механикой, СТО служит теоретической базой современной физики и техники. СТО часто называют релятивистской теорией, а специфические явления, описываемые этой теорией, – релятивистскими эффектами. Эти эффекты наиболее отчетливо проявляются при скоростях движения тел, близких к скорости света в вакууме c ≈ 3·108 м/с.

Создатели СТО. Специальная теория относительности была создана А. Эйнштейном (1905 г.). Предшественниками Эйнштейна, очень близко подошедшими к решению проблемы, были нидерландский физик Х. Лоренц и выдающийся французский физик А. Пуанкаре. Значительный вклад внесли Д. Лармор, Д.Фитцджеральд, матема
Слайд 4

Создатели СТО

Специальная теория относительности была создана А. Эйнштейном (1905 г.). Предшественниками Эйнштейна, очень близко подошедшими к решению проблемы, были нидерландский физик Х. Лоренц и выдающийся французский физик А. Пуанкаре. Значительный вклад внесли Д. Лармор, Д.Фитцджеральд, математик Г. Минковский.

Альберт Эйнштейн (Einstein) (14.III.1879–18.IV.1955). Физик-теоретик, один из основателей современной физики. Родился в Германии, с 1893 жил в Швейцарии, в 1933 эмигрировал в США. В 1905 вышла в свет его первая серьезная научная работа, посвященная броуновскому движению: «О движении взвешенных в пок
Слайд 5

Альберт Эйнштейн (Einstein) (14.III.1879–18.IV.1955)

Физик-теоретик, один из основателей современной физики. Родился в Германии, с 1893 жил в Швейцарии, в 1933 эмигрировал в США. В 1905 вышла в свет его первая серьезная научная работа, посвященная броуновскому движению: «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории». В том же году вышла и другая работа Эйнштейна «Об одной эвристической точке зрения на возникновение и превращение света». Вслед за Максом Планком он выдвинул предположение, что свет испускается и поглощается дискретно, и сумел объяснить фотоэффект. Эта работа была удостоена Нобелевской премии (1921). Наибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905 году, в статье «К электродинамике движущихся тел».

Хендрик Антон Лоренц (Lorentz) (18.VII.1853–4.II.1898). Нидерландский физик-теоретик, создатель классической электронной теории. Работы в области электродинамики, термодинамики, оптики, теории излучения, атомной физики. Исходя из электромагнитной теории Максвелла–Герца и вводя в учение об электричес
Слайд 6

Хендрик Антон Лоренц (Lorentz) (18.VII.1853–4.II.1898)

Нидерландский физик-теоретик, создатель классической электронной теории. Работы в области электродинамики, термодинамики, оптики, теории излучения, атомной физики. Исходя из электромагнитной теории Максвелла–Герца и вводя в учение об электричестве атомистику, создал (1880–1909) классическую электронную теорию, основанную на анализе движений дискретных электрических зарядов. Вывел формулу, связывающую диэлектрическую проницаемость с плотностью диэлектрика, и зависимость показателя преломления вещества от его плотности (формула Лоренца–Лоренца), дал выражение для силы, действующей на движущийся заряд в магнитном поле (сила Лоренца), объяснил зависимость электропроводности вещества от теплопроводности, развил теорию дисперсии света.

Для объяснения опыта Майкельсона–Морли выдвинул (1892) гипотезу о сокращении размеров тел в направлении их движения (сокращение Лоренца). В 1904 вывел формулы, связывающие между собой пространственные координаты и моменты времени одного и того же события в двух различных инерциальных системах отсчета (преобразования Лоренца). Подготовил переход к теории относительности.

Анри Пуанкаре (Poincare) (29.IV.1854–17.VII.1912). Французский математик и физик. Основные труды по топологии, теории вероятностей, теории дифференциальных уравнений, теории автоморфных функций, неевклидовой геометрии. Занимался математической физикой, в частности теорией потенциала, теорией теплопр
Слайд 7

Анри Пуанкаре (Poincare) (29.IV.1854–17.VII.1912)

Французский математик и физик. Основные труды по топологии, теории вероятностей, теории дифференциальных уравнений, теории автоморфных функций, неевклидовой геометрии. Занимался математической физикой, в частности теорией потенциала, теорией теплопроводности, а также решением различных задач по механики и астрономии.

В 1905 написал сочинения «О динамике электрона», в которой независимо от А. Эйнштейна развил математические следствия «постулата относительности».

Принцип относительности и преобразования Галилея. законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциально
Слайд 8

Принцип относительности и преобразования Галилея.

законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K'). В частном случае, когда система K' движется со скоростью υ вдоль положительного направления оси x системы K преобразования Галилея имеют вид: x = x' + υxt, y = y', z = z', t = t'. В начальный момент оси координат обеих систем совпадают.

Следствие преобразований Галилея - закон преобразования скоростей при переходе от одной системы отсчета к другой: υx = υ'x + υ, υy = υ'y, υz = υ'z. Ускорения тела во всех инерциальных системах оказываются одинаковыми. Следовательно, уравнение движения классической механики не меняет своего вида при
Слайд 9

Следствие преобразований Галилея - закон преобразования скоростей при переходе от одной системы отсчета к другой: υx = υ'x + υ, υy = υ'y, υz = υ'z. Ускорения тела во всех инерциальных системах оказываются одинаковыми. Следовательно, уравнение движения классической механики не меняет своего вида при переходе от одной инерциальной системы к другой.

Постулаты СТО. В основе специальной теории относительности лежат два постулата (или принципа), сформулированные Эйнштейном в 1905 г. Эти принципы являются обобщением всей совокупности опытных фактов.
Слайд 10

Постулаты СТО

В основе специальной теории относительности лежат два постулата (или принципа), сформулированные Эйнштейном в 1905 г. Эти принципы являются обобщением всей совокупности опытных фактов.

Принцип относительности Эйнштейна: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму.
Слайд 11

Принцип относительности Эйнштейна:

все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму.

Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пр
Слайд 12

Принцип постоянства скорости света:

скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.

Принцип соответствия Н.Бора. новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия.
Слайд 13

Принцип соответствия Н.Бора

новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия.

Опыты Майкельсона и Морли. Майкельсон (Michelson) Альберт (19.XII.1852–9.V.1931).Американский физик. В 1878–82 и 1924–26 провел измерения скорости света, долгое время остававшиеся непревзойденными по точности. В 1881 экспериментально доказал и совместно с Э. У. Морли (1885–87) подтвердил с большой т
Слайд 14

Опыты Майкельсона и Морли

Майкельсон (Michelson) Альберт (19.XII.1852–9.V.1931).Американский физик. В 1878–82 и 1924–26 провел измерения скорости света, долгое время остававшиеся непревзойденными по точности. В 1881 экспериментально доказал и совместно с Э. У. Морли (1885–87) подтвердил с большой точностью независимость скорости света от скорости движения Земли. Морли (Morley) Эдвард Уильямс (29.I.1839–1923) Американский физик. Наибольшую известность получили его работы в области интерферометрии, выполненные совместно с Майкельсоном. В химии же высшим достижением Морли было точное сравнение атомных масс элементов с массой атома водорода, за которое ученый был удостоен наград нескольких научных обществ.

Принцип опыта. Цель опыта – измерить скорость света относительно «эфирного ветра» (параллельно и перпендикулярно движению Земли). Упрощенная схема интерференционного опыта Майкельсона–Морли. (υ – орбитальная скорость Земли).
Слайд 15

Принцип опыта

Цель опыта – измерить скорость света относительно «эфирного ветра» (параллельно и перпендикулярно движению Земли).

Упрощенная схема интерференционного опыта Майкельсона–Морли. (υ – орбитальная скорость Земли).

Идея опыта. - Наблюдение смещения интерференционных полос.
Слайд 16

Идея опыта

- Наблюдение смещения интерференционных полос.

Преобразования Лоренца. Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется отно
Слайд 17

Преобразования Лоренца

Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики.

Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:

Относительность одновременности. события, являющиеся одновременными в одной ИСО, неодновременны в другой ИСО, движущейся относительно первой
Слайд 18

Относительность одновременности

события, являющиеся одновременными в одной ИСО, неодновременны в другой ИСО, движущейся относительно первой

Относительность промежутков времени. Моменты наступлений событий в системе K' фиксируются по одним и тем же часам C, а в системе K – по двум синхронизованным пространственно-разнесенным часам C1 и C2. Система K' движется со скоростью υ в положительном направлении оси x системы K.
Слайд 19

Относительность промежутков времени.

Моменты наступлений событий в системе K' фиксируются по одним и тем же часам C, а в системе K – по двум синхронизованным пространственно-разнесенным часам C1 и C2. Система K' движется со скоростью υ в положительном направлении оси x системы K.

Специальная теория относительности Слайд: 20
Слайд 20
Пример. если космонавты отправляются к звездной системе (и обратно), находящейся на расстоянии 500 световых лет от Земли, со скоростью v=0,9999c, то на это потребуется по их часам 14,1 года; в то время как на Земле пройдет 10 веков
Слайд 21

Пример

если космонавты отправляются к звездной системе (и обратно), находящейся на расстоянии 500 световых лет от Земли, со скоростью v=0,9999c, то на это потребуется по их часам 14,1 года; в то время как на Земле пройдет 10 веков

Относительность расстояний. Измерение длины движущегося стержня
Слайд 22

Относительность расстояний

Измерение длины движущегося стержня

Специальная теория относительности Слайд: 23
Слайд 23
Домашнее задание № 2. Г.Н. Степанова. Физика-11, ч.1 § 30, 31 – знать: Формулу сложения скоростей и ее смысл. Формулу релятивистского импульса Формулы полной энергии и энергии покоя Связь энергии и импульса Понимать задачи и границы применимости СТО, принцип соответствия В помощь: Таблица «Подведем
Слайд 24

Домашнее задание № 2

Г.Н. Степанова. Физика-11, ч.1 § 30, 31 – знать: Формулу сложения скоростей и ее смысл. Формулу релятивистского импульса Формулы полной энергии и энергии покоя Связь энергии и импульса Понимать задачи и границы применимости СТО, принцип соответствия В помощь: Таблица «Подведем итоги» на стр. 146.

Сложение скоростей. Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K'. ux = u'x + υ, uy = 0, uz = 0. При υ
Слайд 25

Сложение скоростей

Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K'.

ux = u'x + υ, uy = 0, uz = 0.

При υ

В любом случае выполняется условие ux ≤ с. Например, пусть u’x = с и υ = c. Тогда: Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой импульс, то для скорости ux импульса в системе K получим
Слайд 26

В любом случае выполняется условие ux ≤ с. Например, пусть u’x = с и υ = c. Тогда:

Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой импульс, то для скорости ux импульса в системе K получим

Импульс в СТО. Уравнения классической механики Ньютона оказались неинвариантными относительно преобразований Лоренца, и поэтому СТО потребовала пересмотра и уточнения законов механики. В основу такого пересмотра Эйнштейн положил требования выполнимости закона сохранения импульса и закона сохранения
Слайд 27

Импульс в СТО

Уравнения классической механики Ньютона оказались неинвариантными относительно преобразований Лоренца, и поэтому СТО потребовала пересмотра и уточнения законов механики. В основу такого пересмотра Эйнштейн положил требования выполнимости закона сохранения импульса и закона сохранения энергии в замкнутых системах. Для этого оказалось необходимым изменить определение импульса тела. Релятивистский импульс тела с массой m, движущегося со скоростью записывается в виде

Масса в СТО. Масса m, входящая в выражение для импульса, есть фундаментальная характеристика частицы, не зависящая от выбора инерциальной системы отсчета, а, следовательно, и от скорости ее движения. (Во многих учебниках прошлых лет ее было принято обозначать буквой m0 и называть массой покоя. Кроме
Слайд 28

Масса в СТО

Масса m, входящая в выражение для импульса, есть фундаментальная характеристика частицы, не зависящая от выбора инерциальной системы отсчета, а, следовательно, и от скорости ее движения. (Во многих учебниках прошлых лет ее было принято обозначать буквой m0 и называть массой покоя. Кроме того, вводилась так называемая релятивистская масса, зависящая от скорости движения тела. Современная физика постепенно отказывается от этой терминологии).

Динамика СТО. Основной закон релятивистской динамики материальной точки записывается так же, как и второй закон Ньютона, но только в СТО под понимается релятивистский импульс частицы: Следовательно
Слайд 29

Динамика СТО

Основной закон релятивистской динамики материальной точки записывается так же, как и второй закон Ньютона, но только в СТО под понимается релятивистский импульс частицы:

Следовательно

Энергия в СТО. Вычисление кинетической энергии приводит к следующему выражению: Эйнштейн интерпретировал первый член в правой части этого выражения как полную энергию E движущийся частицы, а второй член как энергию покоя.
Слайд 30

Энергия в СТО

Вычисление кинетической энергии приводит к следующему выражению:

Эйнштейн интерпретировал первый член в правой части этого выражения как полную энергию E движущийся частицы, а второй член как энергию покоя.

Зависимость кинетической энергии от скорости. Зависимость кинетической энергии от скорости для релятивистской (a) и классической (b) частиц. При υ
Слайд 31

Зависимость кинетической энергии от скорости

Зависимость кинетической энергии от скорости для релятивистской (a) и классической (b) частиц. При υ

Связь массы и энергии. Утверждение о том, что находящаяся в покое масса m содержит огромный запас энергии получило разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на Δm, то при этом должна выделиться энергия ΔE = Δm·c2.
Слайд 32

Связь массы и энергии

Утверждение о том, что находящаяся в покое масса m содержит огромный запас энергии получило разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на Δm, то при этом должна выделиться энергия ΔE = Δm·c2.

Многочисленные прямые эксперименты дают убедительные доказательства существования энергии покоя.

Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются характеристиками материальных объектов. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами. Важнейшим свойством энерг
Слайд 33

Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются характеристиками материальных объектов.

Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами.

Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах.

Формула Эйнштейна выражает фундаментальный закон природы, который принято называть законом взаимосвязи массы и энергии.

Связь энергии и импульса. Отсюда следует, что для покоящихся частиц (p = 0) E = E0 = mc2. Между полной энергией, энергией покоя и импульсом существует следующая связь:
Слайд 34

Связь энергии и импульса

Отсюда следует, что для покоящихся частиц (p = 0) E = E0 = mc2.

Между полной энергией, энергией покоя и импульсом существует следующая связь:

Безмассовые частицы. Т.о. частица может иметь энергию и импульс, но не иметь массы (m = 0). Такие частицы называются безмассовыми. Для безмассовых частиц связь между энергией и импульсом выражается простым соотношением Е = pc. К безмассовым частицам относятся фотоны – кванты электромагнитного излуче
Слайд 35

Безмассовые частицы

Т.о. частица может иметь энергию и импульс, но не иметь массы (m = 0). Такие частицы называются безмассовыми. Для безмассовых частиц связь между энергией и импульсом выражается простым соотношением Е = pc. К безмассовым частицам относятся фотоны – кванты электромагнитного излучения и, возможно, нейтрино. Безмассовые частицы не могут существовать в состоянии покоя, во всех инерциальных системах отсчета они движутся с предельной скоростью c.

Подведем итоги
Слайд 36

Подведем итоги

Задание 1. Два автомобиля движутся в противоположных направлениях со скоростями υ1 и υ2 относительно поверхности Земли. Чему равна скорость света от фар первого автомобиля в системе отсчета, связанной с другим автомобилем? c + (υ1 + υ2) c - (υ1 – υ2) c – (υ1 + υ2) c – (υ1 – υ2) c
Слайд 37

Задание 1

Два автомобиля движутся в противоположных направлениях со скоростями υ1 и υ2 относительно поверхности Земли. Чему равна скорость света от фар первого автомобиля в системе отсчета, связанной с другим автомобилем? c + (υ1 + υ2) c - (υ1 – υ2) c – (υ1 + υ2) c – (υ1 – υ2) c

Задание 2. Панель дома массой 200 кг поднята на высоту 10 м. Как изменится при этом его масса? Не изменится Увеличится на 0,22∙10–12 кг Уменьшится на 0,22∙10–12 кг Для решения задачи не хватает данных
Слайд 38

Задание 2

Панель дома массой 200 кг поднята на высоту 10 м. Как изменится при этом его масса? Не изменится Увеличится на 0,22∙10–12 кг Уменьшится на 0,22∙10–12 кг Для решения задачи не хватает данных

Задание 3. Опыты по наблюдению спектра водорода, находящегося в спектральной трубке, выполнялись дважды. Первый раз на Земле, второй раз в космическом корабле, движущемся относительно Земли с постоянной скоростью. Наблюдаемые спектры одинаковы существенно различны сходны, но все спектральные линии с
Слайд 39

Задание 3

Опыты по наблюдению спектра водорода, находящегося в спектральной трубке, выполнялись дважды. Первый раз на Земле, второй раз в космическом корабле, движущемся относительно Земли с постоянной скоростью. Наблюдаемые спектры одинаковы существенно различны сходны, но все спектральные линии сдвинуты друг относительно друга

Задание 4. Рассчитайте отношение времени τ в системе отсчета, движущейся со скоростью υ = 1,5∙108 м/с относительно лабораторной системы отсчета, к собственному времени τ 0.
Слайд 40

Задание 4

Рассчитайте отношение времени τ в системе отсчета, движущейся со скоростью υ = 1,5∙108 м/с относительно лабораторной системы отсчета, к собственному времени τ 0.

Задание 5. Найдите скорость υ частицы, которой потребовалось бы на 2 года больше, чем световому импульсу, чтобы пройти расстояние в 6,0 световых лет до далекой звезды. Скорость частицы выразите в долях скорости света c.
Слайд 41

Задание 5

Найдите скорость υ частицы, которой потребовалось бы на 2 года больше, чем световому импульсу, чтобы пройти расстояние в 6,0 световых лет до далекой звезды. Скорость частицы выразите в долях скорости света c.

Список похожих презентаций

Специальная теория относительности

Специальная теория относительности

СТО. Специальная теория относительности (СТО) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных ...
Теория относительности Эйнштейна

Теория относительности Эйнштейна

Краткая аннотация и инструкция по работе с программой. В данной работе рассказывается о теории относительности Эйнштейна, описываются постулаты и ...
Теория относительности и Альберт Эйнштейн

Теория относительности и Альберт Эйнштейн

Альберт Эйнштейн (1879–1955). Кратко об Эйнштейне. Альберт Эйнштейн родился в 1879 году. В 1900 году окончил Цюрихский политехнический институт. В ...
Теория относительности и релятивистской механики

Теория относительности и релятивистской механики

Силы взаимодействия между материальными точками зависят от их относительных скоростей и расстояний между ними, которые не изменяются при преобразованиях ...
Теория относительности 1

Теория относительности 1

ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ. Постулаты СТО. Кинематика СТО. Современная физика. Классическая физика. СТО. Цель:. Уточнить и углубить ...
Теория относительности

Теория относительности

Содержание. 1.    Рождение теории 2.    Принцип относительности 3.    Преобразования Галилея 4.    Преобразования Лоренца 5.    Специальная теория относительности ...
Теория относительности

Теория относительности

Наиболее существенное расхождение классической теории с корректно поставленным физическим экспериментом было впервые зафиксировано в 1881 г. в опыте ...
Теория относительности Эйнштейна

Теория относительности Эйнштейна

Задумываясь, какое именно событие все-таки знаменовало зарождение современной науки, я нередко останавливаю свой выбор на одном малоизвестном событии, ...
Общая теория относительности Эйнштейна

Общая теория относительности Эйнштейна

Физика до теории относительности. Аристотель: движение – переход вещества в форму. Поведение тел определяется соотношением их составе «земли» и «огня». ...
Теория относительности и Альберт Эйнштейн

Теория относительности и Альберт Эйнштейн

Альберт Эйнштейн (1879–1955). Кратко об Эйнштейне. Альберт Эйнштейн родился в 1879 г. В 1900 г. окончил Цюрихский политехнический институт. В 1902 ...
Общая теория относительности

Общая теория относительности

Тема 9. ОСНОВНЫЕ ПОЛОЖЕНИЯ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (ОТО). 9.1. Обобщение закона тяготения Ньютона 9.2. Принцип эквивалентности сил инерции и ...
Принцип относительности в механике. Постулаты теории относительности

Принцип относительности в механике. Постулаты теории относительности

Г. Галилей ввел в классическую механику принцип относительности, смысл которого следующий: законы механики имеют один и тот же вид во всех инерциальных ...
Строение атома. Квантовая теория строения атома

Строение атома. Квантовая теория строения атома

Модели атома. Модель атома Томсона Модель атома Резерфорда Модель атома Бора Модель атома Шрёдингера. Модель атома Томсона. «Пудинг с изюмом». Джозеф ...
Корпускулярная и волновая теория света. Скорость света

Корпускулярная и волновая теория света. Скорость света

Длительное время параллельно друг другу развивались две теории световых явлений. Волновая Корпускулярная. Теории света. корпускулярная волновая Свет ...
Молекулярно-кинетическая теория

Молекулярно-кинетическая теория

Определение молекулярно-кинетической теории. Теория, объясняющая тепловые свойства макроскопических тел на основе представления об их атомно-молекулярном ...
Принцип относительности в механике

Принцип относительности в механике

1. Принцип относительности Галилея. Никакими механическими опытами, проводимыми в ИСО, нельзя установить, движется эта система отсчета прямолинейно ...
Постулаты специальной теории относительности

Постулаты специальной теории относительности

Принцип относительности Галилея. Закон сложения скоростей. При изложении механики предполагалось, что механические явления происходят одинаково в ...
Основы теории относительности

Основы теории относительности

Содержание. Несостоятельность теории Галилея Теории учёных Постулаты теории относительности А.Эйнштейна Релятивистский закон сложения скоростей Относительность ...
Новые преобразования для теории относительности

Новые преобразования для теории относительности

Цель преобразований:. Введение единых эталонов времени и протяженности для инерциальных систем отсчета (ИСО) S и S', двигающихся друг относительно ...
Элементы специальной теории относительности

Элементы специальной теории относительности

Согласно классическим представлениям о пространстве и времени, считавшимся на протяжении веков незыблемыми, движение не оказывает никакого влияния ...

Конспекты

Третий закон Ньютона. Принцип относительности

Третий закон Ньютона. Принцип относительности

План №______. Класс 9. Тема:. Третий закон Ньютона. Принцип относительности. Тип урока:. комбинированный. Цели:. изучить третий закон Ньютона; ...
Физическая теория

Физическая теория

Физика 7кл . Тема урока. : Физическая теория . Цели и задачи урока:. ученик должен усвоить: - понятие физическая теория; - основную задачу физической ...
Принцип относительности Галилея. Законы Ньютона

Принцип относительности Галилея. Законы Ньютона

Урок физики. Тема:. Принцип относительности Галилея. Законы Ньютона. Цели:. 1. Сформулировать принцип относительности Галилея. Дать знания ...
Принципы относительности Галилея. Первый закон Ньютона

Принципы относительности Галилея. Первый закон Ньютона

Автор:. Борисова Екатерина Сергеевна, преподаватель физики, информатики. Место работы:. ГООУ СПО «Мурманский строительный колледж им. Н.Е.Момота», ...
Принцип относительности в механике. Постулаты теории относительности

Принцип относительности в механике. Постулаты теории относительности

Цуканова Наталья Рефатовна. Преподаватель физики, вторая категория. КГУ «Машиностроительный колледж города Петропавловска». Казахстан ,СКО,г.Петропавловск. ...
Научные методы изучения природы.Физический эксперимент. Физическая теория

Научные методы изучения природы.Физический эксперимент. Физическая теория

Предмет: Физика. . Класс: 7 рус. План занятия №. _. 5. __. Дата. 17. 09. 2013 год. Тема:. Научные методы изучения природы.Физический эксперимент. ...
Молекулярно- кинетическая теория в нашей жизни

Молекулярно- кинетическая теория в нашей жизни

Муниципальное общеобразовательное бюджетное учреждение средняя общеобразовательная школа с. Первомайский муниципального района Благоварский район ...
Молекулярно – кинетическая теория

Молекулярно – кинетическая теория

Данный урок я провожу после изучения раздела «Молекулярно – кинетическая теория» в группах учащихся 1 курса. Этот урок обобщения и систематизации ...
Задачи и вопросы по теории относительности

Задачи и вопросы по теории относительности

Задачи и вопросы по теории относительности. В небольшой, но содержательной теме по элементам специальной теории относительности у учителя нет возможностей ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:2 ноября 2018
Категория:Физика
Содержит:41 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации