Презентация "Сила упругости" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37

Презентацию на тему "Сила упругости" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 37 слайд(ов).

Слайды презентации

Учитель: Попова И.А. МОУ СОШ № 30 г. Белово Белово 2010. Сила упругости Подготовка к ГИА
Слайд 1

Учитель: Попова И.А. МОУ СОШ № 30 г. Белово Белово 2010

Сила упругости Подготовка к ГИА

повторение основных понятий, графиков и формул, связанных с силой упругости, а также разбор задач различного уровня сложности в соответствии с кодификатором ГИА и планом демонстрационного варианта экзаменационной работы. Цель:
Слайд 2

повторение основных понятий, графиков и формул, связанных с силой упругости, а также разбор задач различного уровня сложности в соответствии с кодификатором ГИА и планом демонстрационного варианта экзаменационной работы

Цель:

Деформация – результат действия силы. Чем больше усилие, сжимающее пружину, тем больше ее деформация
Слайд 3

Деформация – результат действия силы

Чем больше усилие, сжимающее пружину, тем больше ее деформация

Виды деформаций. Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил. Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими, а деформации, сохраняющиеся и после тог
Слайд 4

Виды деформаций

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил. Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими, а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими.

Растяжение пружины
Слайд 5

Растяжение пружины

Деформации растяжения или сжатия (одностороннего или всестороннего). Деформации кручения. Деформации изгиба. Деформации сдвига
Слайд 6

Деформации растяжения или сжатия (одностороннего или всестороннего)

Деформации кручения

Деформации изгиба

Деформации сдвига

Сила упругости. При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества.
Слайд 7

Сила упругости

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества.

Электромагнитная природа силы упругости. При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частиц
Слайд 8

Электромагнитная природа силы упругости

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Сила упругости и кое-что о межмолекулярных силах. Силы притяжения возникают благодаря наличию в молекулах заряженных частиц. Тело недеформировано, молекулы находятся в положениях равновесия (расстояние между молекулами примерно равно диаметру молекулы), силы отталкивания равны силам притяжения. Тело
Слайд 9

Сила упругости и кое-что о межмолекулярных силах

Силы притяжения возникают благодаря наличию в молекулах заряженных частиц.

Тело недеформировано, молекулы находятся в положениях равновесия (расстояние между молекулами примерно равно диаметру молекулы), силы отталкивания равны силам притяжения. Тело деформировано, расстояние между молекулами уменьшилось, силы отталкивания и притяжения возросли, но силы отталкивания превосходят силы притяжения, результирующая сила сонаправлена с силой отталкивания, возникает сила упругости, которая стремится вернуть молекулы в прежнее положение. Тело деформировано, расстояние между молекулами увеличилось, силы отталкивания и притяжения уменьшились, но силы притяжения превосходят силы отталкивания, результирующая сила сонаправлена с силой притяжения, возникает сила упругости, которая стремится вернуть молекулы в прежнее положение.

Силы упругости. Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости.
Слайд 10

Силы упругости

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости.

Сила упругости Слайд: 11
Слайд 11
Закон Гука. Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком: При малых деформациях (|x| . Роберт Гук (18 июля 1635, остров Уайт — 3 марта 1703, Лондон) — английский естествоиспытатель, учё
Слайд 12

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком: При малых деформациях (|x| 

Роберт Гук (18 июля 1635, остров Уайт — 3 марта 1703, Лондон) — английский естествоиспытатель, учёный-энциклопедист. Гука можно смело назвать одним из отцов физики, в особенности экспериментальной, но и во многих других науках ему принадлежат зачастую одни из первых основополагающих работ.

При малых деформациях (|x| . Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. Выражает линейную зависимость между напряжениями и малыми деформациями в упругой среде
Слайд 13

При малых деформациях (|x| 

Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

Выражает линейную зависимость между напряжениями и малыми деформациями в упругой среде

Расчет коэффициента жесткости двух пружин (параллельное соединение). Имеем две пружины с коэффициентами жесткости к1 и к2. Рассчитаем коэффициент жесткости пружины, которая может заменить эти две пружины, если они соединены параллельно. Представим, что мы потянули за концы этих пружин: каждая из них
Слайд 15

Расчет коэффициента жесткости двух пружин (параллельное соединение)

Имеем две пружины с коэффициентами жесткости к1 и к2. Рассчитаем коэффициент жесткости пружины, которая может заменить эти две пружины, если они соединены параллельно. Представим, что мы потянули за концы этих пружин: каждая из них удлинилась на х. в каждой из них возникнут силы упругости к1х и к2х, которые приложены в одной точке, Поэтому мы можем заменить эти две пружины на одну, которая растянута на х и создает силу (к1+к2)х, следовательно, Fобщ=(к1+к2)х=кобщх. Отсюда получаем, что кобщ=к1+к2

x Fобщ = (k1 + k2)x Fупр = k1x Fупр = k2x

Расчет коэффициента жесткости двух пружин (последовательное соединение). Имеем две пружины с коэффициентами жесткости к1 и к2. Рассчитаем коэффициент жесткости пружины, которая может заменить эти две пружины, если они соединены параллельно. Представим, что мы потянули за концы этих пружин: каждая из
Слайд 16

Расчет коэффициента жесткости двух пружин (последовательное соединение)

Имеем две пружины с коэффициентами жесткости к1 и к2. Рассчитаем коэффициент жесткости пружины, которая может заменить эти две пружины, если они соединены параллельно. Представим, что мы потянули за концы этих пружин: каждая из них удлинилась на х1 и х2, соответственно. Общее удлинение (деформация) будет равна х= х1+х2 Поэтому мы можем заменить эти две пружины на одну, которая растянута на х и создает силу F=kобщx= k1х1=k2х2 , следовательно, Fобщ= k1х1=k2х2 = кобщх. Отсюда получаем, что Итак, общее удлинение пружины

x1 x2 Fупр = k1x1 Fупр = k2x2 x = x1 + x2

F = к1х1= к2х1 Они равны между собой по 3 закону Ньютону, так как они с этими силами пружины действуют друг на друга в точке соединения.

Следствия. Коэффициент жесткости зависит от длины пружины. Эта зависимость обратнопропорциональная: длинную резинку натянуть легче чем короткую Коэффициент жесткости зависит от площади поперечного сечения упругого стержня. Эта зависимость прямопропорциональная: толстую резинку натянуть труднее чем т
Слайд 17

Следствия

Коэффициент жесткости зависит от длины пружины. Эта зависимость обратнопропорциональная: длинную резинку натянуть легче чем короткую Коэффициент жесткости зависит от площади поперечного сечения упругого стержня. Эта зависимость прямопропорциональная: толстую резинку натянуть труднее чем тонкую

Обратите внимание. Закон Гука выполняется только при малых деформациях При больших деформациях прямая пропорциональность нарушается
Слайд 18

Обратите внимание

Закон Гука выполняется только при малых деформациях При больших деформациях прямая пропорциональность нарушается

Стрельба из лука
Слайд 19

Стрельба из лука

Разновидности сил упругости. Сила натяжения нити. Сила реакции опоры. T N
Слайд 21

Разновидности сил упругости

Сила натяжения нити

Сила реакции опоры

T N

Особенности сил упругости. Сила упругости всегда направлена противоположно той силе, которая вызвала изменение формы или размеров тела. Вес тела вызвал удлинение пружины. Сила упругости (натяжение нити). Вес тела вызвал деформацию опоры. Сила упругости (реакция опоры). Сила руки вызвала сжатие пружи
Слайд 22

Особенности сил упругости

Сила упругости всегда направлена противоположно той силе, которая вызвала изменение формы или размеров тела

Вес тела вызвал удлинение пружины

Сила упругости (натяжение нити)

Вес тела вызвал деформацию опоры

Сила упругости (реакция опоры)

Сила руки вызвала сжатие пружины

Итоги
Слайд 23

Итоги

Подборка заданий по кинематике (из заданий ГИА 2008-2010 гг.). Рассмотрим задачи:
Слайд 24

Подборка заданий по кинематике (из заданий ГИА 2008-2010 гг.)

Рассмотрим задачи:

ГИА-2010-2. Стержень длиной L движется по гладкой горизонтальной поверхности. Какая упругая сила возникает в сечении стержня на расстоянии L от конца, к которому приложена сила F, направленная вдоль стержня? 0 F F F Fупр
Слайд 25

ГИА-2010-2. Стержень длиной L движется по гладкой горизонтальной поверхности. Какая упругая сила возникает в сечении стержня на расстоянии L от конца, к которому приложена сила F, направленная вдоль стержня?

0 F F F Fупр

ГИА-2010-2. Стержень длиной L движется по гладкой горизонтальной поверхности. Какая упругая сила возникает в сечении стержня на расстоянии — ¾ L от конца, к которому приложена сила F, направленная вдоль стержня? 0 ¼ F ½ F ¾ F Fн F = 1/4 ma F = 4 ma
Слайд 26

ГИА-2010-2. Стержень длиной L движется по гладкой горизонтальной поверхности. Какая упругая сила возникает в сечении стержня на расстоянии — ¾ L от конца, к которому приложена сила F, направленная вдоль стержня?

0 ¼ F ½ F ¾ F Fн F = 1/4 ma F = 4 ma

ГИА-2010-2. К невесомой нити подвешен груз массой 1 кг. Если точка подвеса нити движется равноускоренно вертикально вниз с ускорением 4 м/с2, то натяжение нити равно. 1) 8 Н 2) 6 Н 3) 14 Н 4) 2 Н
Слайд 27

ГИА-2010-2. К невесомой нити подвешен груз массой 1 кг. Если точка подвеса нити движется равноускоренно вертикально вниз с ускорением 4 м/с2, то натяжение нити равно

1) 8 Н 2) 6 Н 3) 14 Н 4) 2 Н

ГИА-2010-2. К невесомой нити подвешен груз массой 500 г. Если точка подвеса нити движется равноускоренно вертикально вверх с ускорением 2 м/с2, то натяжение нити равно. 1 Н 2 Н 4 Н 6 Н
Слайд 28

ГИА-2010-2. К невесомой нити подвешен груз массой 500 г. Если точка подвеса нити движется равноускоренно вертикально вверх с ускорением 2 м/с2, то натяжение нити равно

1 Н 2 Н 4 Н 6 Н

ГИА-2010-2. Через неподвижный блок перекинута невесомая нерастяжимая нить, к концам которой подвешены грузики равной массы, 5 кг каждый. Чему равна сила натяжения нити? 12,5 Н 25 Н 50 Н 100 Н
Слайд 29

ГИА-2010-2. Через неподвижный блок перекинута невесомая нерастяжимая нить, к концам которой подвешены грузики равной массы, 5 кг каждый. Чему равна сила натяжения нити?

12,5 Н 25 Н 50 Н 100 Н

ГИА-2009-5. Если вертолет массой 40 тонн поднимается вертикально вверх с ускорением 0,5 м/с2, то при значении ускорения свободного падения 10 м/с2 на ось его винта действует сила упругости ... 1. 20 Н. 2. 420 Н. 3. 20 000 Н. 4. 380 000 Н. 5. 420 000 Н.
Слайд 30

ГИА-2009-5. Если вертолет массой 40 тонн поднимается вертикально вверх с ускорением 0,5 м/с2, то при значении ускорения свободного падения 10 м/с2 на ось его винта действует сила упругости ...

1. 20 Н. 2. 420 Н. 3. 20 000 Н. 4. 380 000 Н. 5. 420 000 Н.

ГИА-2009-5. Если вертолет массой 40 т опускается вертикалью вниз с ускорением 0,5 м/с2, то при значении ускорения свободного падения 10 м/с2 на ось его винта действует сила упругости ... 1. 20 Н. 2. 380 Н. 3. 20 000 Н. 4. 380 000 Н. 5. 420 000 Н.
Слайд 31

ГИА-2009-5. Если вертолет массой 40 т опускается вертикалью вниз с ускорением 0,5 м/с2, то при значении ускорения свободного падения 10 м/с2 на ось его винта действует сила упругости ...

1. 20 Н. 2. 380 Н. 3. 20 000 Н. 4. 380 000 Н. 5. 420 000 Н.

ГИА-2009-6. Сила, прямо пропорциональная деформации тела и направленная противоположно смещению частиц при деформации, является силой ... 1. упругости. 2. трения скольжения. 3. трения покоя. 4. равнодействующей.
Слайд 32

ГИА-2009-6. Сила, прямо пропорциональная деформации тела и направленная противоположно смещению частиц при деформации, является силой ...

1. упругости. 2. трения скольжения. 3. трения покоя. 4. равнодействующей.

ГИА-2010-15. На рисунке показан график зависимости силы упругости бельевой резинки от изменения ее длины Δl. При каких значениях изменения длины Δl соблюдается закон Гука о пропорциональности силы упругости тела его удлинению? 1) при всех значениях Δl 2) при Δl больше Δl1 3) ни при каких значениях Δ
Слайд 33

ГИА-2010-15. На рисунке показан график зависимости силы упругости бельевой резинки от изменения ее длины Δl. При каких значениях изменения длины Δl соблюдается закон Гука о пропорциональности силы упругости тела его удлинению?

1) при всех значениях Δl 2) при Δl больше Δl1 3) ни при каких значениях Δl 4) при Δl меньше Δl1

ГИА-2010-25. К нижнему концу легкой пружины подвешены связанные невесомой нитью грузы: верхний массой m1 = 0,5 кг и нижний массой m2 = 0,2 кг (см. рисунок). Нить, соединяющую грузы, пережигают. С каким ускорением начнет двигаться верхний груз? -4 Ответ: _______(м/с). До пережигания нити: После переж
Слайд 34

ГИА-2010-25. К нижнему концу легкой пружины подвешены связанные невесомой нитью грузы: верхний массой m1 = 0,5 кг и нижний массой m2 = 0,2 кг (см. рисунок). Нить, соединяющую грузы, пережигают. С каким ускорением начнет двигаться верхний груз?

-4 Ответ: _______(м/с)

До пережигания нити:

После пережигания нити на груз m2 будет действовать эта же сила:

Для груза m1:

ЕГЭ-2005-А3. На рисунке представлен график зависимости силы упругости пружины от величины ее деформации. Жесткость этой пружины равна. 0,01 Н/м 10 Н/м 20 Н/м 100 Н/м
Слайд 35

ЕГЭ-2005-А3. На рисунке представлен график зависимости силы упругости пружины от величины ее деформации. Жесткость этой пружины равна

0,01 Н/м 10 Н/м 20 Н/м 100 Н/м

ЕГЭ-2007-А4. Для измерения жесткости пружины ученик собрал установку (см. рис.1), и подвесил к пружине груз массой 0,1 кг (см. рис.2). Какова жесткость пружины? 40 Н/м 20 Н/м 13 Н/м 0,05 Н/м. Рис.1 Рис. 2
Слайд 36

ЕГЭ-2007-А4. Для измерения жесткости пружины ученик собрал установку (см. рис.1), и подвесил к пружине груз массой 0,1 кг (см. рис.2). Какова жесткость пружины?

40 Н/м 20 Н/м 13 Н/м 0,05 Н/м

Рис.1 Рис. 2

Литература. § 10. Сила упругости. Закон Гука. Социальный навигатор //[Электронный ресурс]// http://edu.yar.ru/russian/projects/socnav/prep/phis001/dyn/dyn10.html 3.7. Деформация . Глава 3. Молекулярная физика и термодинамика. Открытая физика //[Электронный ресурс]// http://physics.ru/courses/op25par
Слайд 37

Литература

§ 10. Сила упругости. Закон Гука. Социальный навигатор //[Электронный ресурс]// http://edu.yar.ru/russian/projects/socnav/prep/phis001/dyn/dyn10.html 3.7. Деформация . Глава 3. Молекулярная физика и термодинамика. Открытая физика //[Электронный ресурс]// http://physics.ru/courses/op25part1/content/chapter3/section/paragraph7/theory.html График зависисмости силы упругости от удлинения. Единая коллекция цифровых образовательных ресурсов //[Электронный ресурс] // http://files.school-collection.edu.ru/dlrstore/8265c218-7e74-4086-9cf0-4482ecc3fb9a/7_81.swf Гук, Роберт. Материал из Википедии — свободной энциклопедии//[Электронный ресурс]// http://ru.wikipedia.org/wiki/%D0%93%D1%83%D0%BA,_%D0%A0%D0%BE%D0%B1%D0%B5%D1%80%D1%82 Гутник, Е. М., Физика. 7 класс. Учебник для общеобразовательных школ / Е. М. Гутник, А. В. Перышкин. - М.: Дрофа, 2009. – 302 с. ЗАКОН ГУКА. Класс!ная физика для любознательных. //[Электронный ресурс]// http://class-fizika.narod.ru/9_20.htm Зорин, Н.И. ГИА 2010. Физика. Тренировочные задания: 9 класс / Н.И. Зорин. – М.: Эксмо, 2010. – 112 с. – (Государственная (итоговая) аттестация (в новой форме). Кабардин, О.Ф. Физика. 9 кл.: сборник тестовых заданий для подготовки к итоговой аттестации за курс основной школы / О.Ф. Кабардин. – М.: Дрофа, 2008. – 219 с; Перышкин, А. В., Физика. 7 класс. Учебник для общеобразовательных школ / А. В. Перышкин. - М.: Дрофа, 2009. – 198 с. Перышкин, А. В., Физика. 8 класс. Учебник для общеобразовательных школ / А. В. Перышкин. - М.: Дрофа, 2009. – 196 с. Примеры сил в механике. Портал естественных наук //[Электронный ресурс]// http://e-science.ru/physics/theory/?t=46 Сила упругости. Закон Гука. Весь курс Физики //[Электронный ресурс]// http://fizika.ayp.ru/1/1_12.html Сила упругости. Закон Гука. Физика//[Электронный ресурс]// http://questions-physics.ru/mehanika/sila_uprugosti_zakon_guka.html Урок № Деформация и сила упругости. Закон Гука. Реакция опоры и вес тела. //[Электронный ресурс]// http://school.ort.spb.ru/library/physics/10class/machanics/lesson_4/lesson_4.htm Федеральный институт педагогических измерений. Контрольные измерительные материалы (КИМ) Физика ГИА-9 2010 г. //[Электронный ресурс]// http://fipi.ru/view/sections/214/docs/ Федеральный институт педагогических измерений. Контрольные измерительные материалы (КИМ) Физика ЕГЭ 2001-2010 //[Электронный ресурс]// http://fipi.ru/view/sections/92/docs/

Список похожих презентаций

Сила упругости. Закон Гука.

Сила упругости. Закон Гука.

Цель учебного занятия:. Выяснить причины возникновения силы упругости. Вывести закон Гука. Задачи. Когнитивная- обобщение понятий «Сила» Операциональная- ...
Сила упругости. Закон Гука. Вес тела

Сила упругости. Закон Гука. Вес тела

- начальная длина 0 - конечная длина. изменение длины, удлинение. = х. Закон Гука: Сила упругости при растяжении (сжатии) прямо пропорциональна ...
Сила упругости. Закон Гука

Сила упругости. Закон Гука

1. Что такое сила? а) любое изменение формы тела; б) мера взаимодействия тел; в) точного понятия нет. 2. Какой буквой обозначают силу? а) S ; б) m ...
Сила упругости. Закон Гука

Сила упругости. Закон Гука

Постановка цели. Изучение нового материала. Ход урока. Организационный момент, вступительное слово учителя. Проверка домашнего задания. Закрепление. ...
Сила упругости нити

Сила упругости нити

Вопросы:. Что является причиной падения всех тел на землю? Почему тела, брошенные горизонтально падают на землю? Какую силу называют силой тяжести? ...
Сила упругости. Закон Гука

Сила упругости. Закон Гука

Цель урока -. способствовать формированию основных понятий: ▪ деформации, ▪ видов и особенностей деформаций, ▪ силы упругости, ▪ закона Гука. Задание ...
Сила упругости

Сила упругости

Сила, возникающая при деформации тела, называется силой упругости. Физический словарик. Деформация (от лат. deformatio – изменение формы, искажение); ...
Сила упругости и ее использование

Сила упругости и ее использование

. . . . . . . . . Деформация- это физическое явление, при котором изменяется форма или размеры тела. ВИДЫ ДЕФОРМАЦИЙ ИЗГИБ СДВИГ РАСТЯЖЕНИЕ КРУЧЕНИЕ ...
Сила упругости

Сила упругости

Цели урока. Дать определение силы упругости; Выяснить ее природу; Сформулировать закон Гука; Применение закона Гука. ПРОБЛЕМНЫЙ ВОПРОС. Рассмотрим ...
Сила упругости

Сила упругости

Сила упругости возникает при деформации тел. Деформация – изменение формы или объема тела. Упругая деформация (исчезает после удаления нагрузки). ...
Сила тяжести. Вес тела. Сила упругости

Сила тяжести. Вес тела. Сила упругости

ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ. 1.Что называется силой тяготения? Где она проявляется ? 2. Сформулировать ЗВТ 3. Каковы пределы применимости ЗВТ? 4. Как называется ...
Сила трения. Трение в природе и технике

Сила трения. Трение в природе и технике

Цели урока. учебные: обобщить полученные знания о силе трения, обсудить роль силы трения в природе и технике. развивающие: продолжить формирование ...
Сила трения покоя, скольжения

Сила трения покоя, скольжения

Контрольные вопросы. 1.Какую силу называют силой трения? 2.Что является причиной силой трения? 3.Какие виды трения существуют? Почему маятник, приведенный ...
Сила трения и ее виды

Сила трения и ее виды

Сила трения возникает между взаимодействующими твёрдыми телами в местах их соприкосновения и препятствует их относительному перемещению. Причины возникновения ...
Сила трения

Сила трения

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение - сила знакомая, но таинственная. Трение может быть ...
Сила. Явление тяготения. Сила тяжести.

Сила. Явление тяготения. Сила тяжести.

Примеры взаимодействия тел. Какие тела взаимодействуют между собой? Что происходит с направлением движения мяча, при воздействии на него ногой мальчика? ...
Сила Архимеда и плавучесть тел

Сила Архимеда и плавучесть тел

УПРАВЛЯЮЩИЕ КЛАВИШИ. Стрелка вправо Стрелка влево. Переход к следующему слайду. Переход к следующему действию. Ускорение текущего действия. Игнорирование ...
Сила Архимеда

Сила Архимеда

Сила Архимеда. На любое тело в жидкости или газе действует сила, выталкивающая это тело -. Сила Архимеда действует на тело, потому что давление ждкости ...

Конспекты

Сила упругости. Закон Гука

Сила упругости. Закон Гука

Урок физики в 7 классе по учебнику А.В. Пёрышкина, 2014. Глава 2: Взаимодействие тел. Тема:. Сила упругости. Закон Гука. Тип урока. : изучение ...
Сила упругости. Закон Гука

Сила упругости. Закон Гука

Урок №18 по теме « Сила упругости. Закон Гука ».1. Цели урока:. 1. образовательная:. выяснить природу силы упругости,. . способствовать ...
Сила упругости

Сила упругости

Сценарий урока. 7 класс - по учебнику Л.Э.Генденштейн. Тема:. Сила упругости. . Цели урока:. Экспериментально установить причину возникновения ...
Сила упругости. Закон Гука

Сила упругости. Закон Гука

Саквояж опытов (слайд 1). Тема урока : Сила упругости. Закон Гука. Цель урока: выяснить природу силы упругости, сформулировать закон Гука. ...
Сила трения. Трение скольжения. Трение покоя

Сила трения. Трение скольжения. Трение покоя

Урок 5. Сила трения. Трение скольжения. Трение покоя. Цель:. сила трения, причины возникновения силы трения, трение скольжения, трение качения, ...
Сила трения. Коэффициент трения

Сила трения. Коэффициент трения

Тема: Сила трения. Коэффициент трения. Цель:. . - образовательная:. формировать у учащихся знания о явлении трения, силе трения, видах трения, ...
Сила трения. Трение в природе и технике

Сила трения. Трение в природе и технике

Конспект урока по физике в 7 классе. «Сила трения. Трение в природе и технике». Цели урока:. - ознакомить учащихся с явлением трения, сформировать ...
Сила трения

Сила трения

Данный урок можно использовать на уроке физики при изучении темы «Сила трения» в 7, 9 и 10-х классах. . . Тема урока: Лабораторная работа «Определение ...
Сила трения в природе и технике

Сила трения в природе и технике

Тема: Сила трения в природе и технике. Цель урока. :. . Образовательная:. А) Познакомить учащихся с силой трения. Б) Осуществить контроль пройденной ...
Сила

Сила

ГОРОДИЩЕНСКИЙ МУНИЦИПАЛЬНЫЙ РАЙОН. ВОЛГОГРАДСКАЯ ОБЛАСТЬ. МБОУ «РОССОШИНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА». Конкина Елена Михайловна. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Физика
Автор презентации:Попова И.А.
Содержит:37 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации