- Электронные свойства поверхности

Презентация "Электронные свойства поверхности" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22

Презентацию на тему "Электронные свойства поверхности" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 22 слайд(ов).

Слайды презентации

Кафедра ВЭПТ. «Основы физики поверхности и тонких пленок». Лекция 7. Тема: Электронные свойства поверхности - Функционал плотности. - Модель желе. - Поверхностные состояния. - Электронная структура поверхности. - Поверхностная проводимость. - Эмиссия электронов и работа выхода. - Взрывная эмиссия.
Слайд 1

Кафедра ВЭПТ

«Основы физики поверхности и тонких пленок»

Лекция 7

Тема: Электронные свойства поверхности - Функционал плотности. - Модель желе. - Поверхностные состояния. - Электронная структура поверхности. - Поверхностная проводимость. - Эмиссия электронов и работа выхода. - Взрывная эмиссия.

Теория функционала плотности основывается на теореме, сформулированной Хохенбергом и Коном, которая гласит, что полная энергия системы (например, кристалла или его поверхности) полностью определяется распределением электронной плотности n(r) в его основном состоянии. Более того, можно определить фун
Слайд 2

Теория функционала плотности основывается на теореме, сформулированной Хохенбергом и Коном, которая гласит, что полная энергия системы (например, кристалла или его поверхности) полностью определяется распределением электронной плотности n(r) в его основном состоянии. Более того, можно определить функционал энергии Е = Е[n(r)], обладающий тем свойством, что он имеет минимум, когда n(r) соответствует распределению плотности в основном состоянии.

Функционал плотности.

Обычно Е[n(r)] представляют в виде суммы трех членов: кинетической энергии Т, электростатической (или кулоновской) энергии U и обменно-корреляционного члена Ехс: E[n(r)] = T + U + Exc.

Распределение электронной плотности n(r), которое минимизирует функционал энергии Е[n(r)], находится как самосогласованное решение системы одноэлектронных уравнений шредингеровского типа (называемых уравнениями Кона-Шэма: Искомая электронная плотность находится по одноэлектронным волновым функциям к
Слайд 3

Распределение электронной плотности n(r), которое минимизирует функционал энергии Е[n(r)], находится как самосогласованное решение системы одноэлектронных уравнений шредингеровского типа (называемых уравнениями Кона-Шэма:

Искомая электронная плотность находится по одноэлектронным волновым функциям как:

Рис. 1. Профиль электронной плотности у поверхности в модели желе для двух значений плотности положительного фона: rs = 2 (сплошная линия) моделирует Аl и rs = 5 (пунктирная линия) моделирует Cs. Расстояние дано в единицах длины волны Ферми, которая равна 3,45 А для rs = 2 и 8,65 А для rs = 5. rs -
Слайд 4

Рис. 1. Профиль электронной плотности у поверхности в модели желе для двух значений плотности положительного фона: rs = 2 (сплошная линия) моделирует Аl и rs = 5 (пунктирная линия) моделирует Cs. Расстояние дано в единицах длины волны Ферми, которая равна 3,45 А для rs = 2 и 8,65 А для rs = 5.

rs - безразмерная величина (среднее расстояние между электронами)

Модель желе.

Давайте применим модель желе для задачи поверхности. Для полубесконечной поверхности с направлением z вдоль нормали к поверхности распределение положительного заряда n+(r) имеет вид ступени при z = 0, то есть. Плотность электронов должна удовлетворять следующим условиям:
Слайд 5

Давайте применим модель желе для задачи поверхности. Для полубесконечной поверхности с направлением z вдоль нормали к поверхности распределение положительного заряда n+(r) имеет вид ступени при z = 0, то есть

Плотность электронов должна удовлетворять следующим условиям:

Рис. 2. СТМ изображение (500x500 А2) в режиме постоянного тока от поверхности Cu(111), полученное при положительном потенциале на образце 0,1 В. Ясно видны осцилляции Фриделя поверхностной плотности электронов около ступеней и точечных дефектов. Вертикальный масштаб изображения сильно растянут, чтоб
Слайд 6

Рис. 2. СТМ изображение (500x500 А2) в режиме постоянного тока от поверхности Cu(111), полученное при положительном потенциале на образце 0,1 В. Ясно видны осцилляции Фриделя поверхностной плотности электронов около ступеней и точечных дефектов. Вертикальный масштаб изображения сильно растянут, чтобы осцилляции Фриделя были видны более четко .

Поверхностные состояния. Рис. 3. а - Одномерный модельный потенциал полубесконечной решетки. Два типа волновых функций в полубесконечном кристалле, б - объемные состояния; в - поверхностные состояния.
Слайд 7

Поверхностные состояния

Рис. 3. а - Одномерный модельный потенциал полубесконечной решетки. Два типа волновых функций в полубесконечном кристалле, б - объемные состояния; в - поверхностные состояния.

Таммовские состояния. Если кристалл ограничен поверхностью, то периодичность решетки нарушается (по крайней мере а направлении, перпендикулярном к поверхности). При этом оказываются разрешенными и такие значения энергии, которые попадают в запрещенные зоны. Это и есть таммовские поверхностные уровни
Слайд 8

Таммовские состояния

Если кристалл ограничен поверхностью, то периодичность решетки нарушается (по крайней мере а направлении, перпендикулярном к поверхности). При этом оказываются разрешенными и такие значения энергии, которые попадают в запрещенные зоны. Это и есть таммовские поверхностные уровни. Электрон в таммовском состоянии напоминает поплавок на поверхности воды: он может свободно двигаться вдоль поверхности, но не способен ни уйти в глубь твердого тела, ни выйти из тела наружу. Электроны как бы прилипают к поверхности. Такое поведение электронов в поверхностных состояниях описывается волновой функцией (жирная кривая), экспоненциально спадающей в глубь кристалла. Пунктирная кривая изображает потенциальную энергию электрона в кристалле. Из хода этой кривой видно, что для того, чтобы оказаться в вакууме, электрону необходимо преодолеть потенциальный барьер. Для простоты на рисунке не показан изгиб зон вблизи поверхности.

Поверхностные состояния Шокли можно объяснить неспаренными связями атомов, находящихся на поверхности. Например, при расколе кристалла создававшие эти связи электронные пары распадаются на независимые электроны, каждый из которых остается в своем атоме. Энергии «одиноких» электронов больше, чем у эл
Слайд 9

Поверхностные состояния Шокли можно объяснить неспаренными связями атомов, находящихся на поверхности. Например, при расколе кристалла создававшие эти связи электронные пары распадаются на независимые электроны, каждый из которых остается в своем атоме. Энергии «одиноких» электронов больше, чем у электронов, образующих ковалентные связи, и поэтому могут попасть в одну из запрещенных зон. Но такие энергии, как мы видели, соответствуют таммовским состояниям. Этот пример показывает, что таммовские состояния и поверхностные состояния Шокли – два частных случая одного и того же явления: перестройки электронной структуры кристалла поверхностью. Таммовские состояния отвечают такой модели кристалла, когда электронные волны проходят через него, лишь слегка «цепляясь» за атомы, почти как в пустом пространстве. В противоположность этой модели «квазисвободных» электронов, состояния Шокли соответствуют сильной связи с атомами, когда зонное движение электронов по кристаллу возникает лишь благодаря их перескокам с одной связи на другую.

состояния Шокли

Поверхностная проводимость. Рис. 4. Схематическая иллюстрация изгиба зон у поверхности полупроводника, а, б - n-типа; е, г - р-типа. Рис. а и в иллюстрируют неравновесную ситуацию. Рис. б и г показывают изгиб зон при равновесии. Ес и Еv — края зоны проводимости и валентной зоны, Ef — энергия Ферми,
Слайд 10

Поверхностная проводимость

Рис. 4. Схематическая иллюстрация изгиба зон у поверхности полупроводника, а, б - n-типа; е, г - р-типа. Рис. а и в иллюстрируют неравновесную ситуацию. Рис. б и г показывают изгиб зон при равновесии. Ес и Еv — края зоны проводимости и валентной зоны, Ef — энергия Ферми, Ed и Еа - энергии объемных донорных и акцепторных уровней. Qss = -Qsc - заряды, накопленные на поверхности и в слое пространственного заряда. eVs = ev (z = 0) обозначает изгиб зон.

Рис. 5. Изменение поверхностной проводимости и картин ДМЭ как функция температуры отжига. Измерения проводились при 300 К после каждого шага изохронного отжига. для слоевой проводимости g полупроводника: встроенный потенциал v(z) внутри слоя пространственного заряда имеет вид: где ε - диэлектрическа
Слайд 11

Рис. 5. Изменение поверхностной проводимости и картин ДМЭ как функция температуры отжига. Измерения проводились при 300 К после каждого шага изохронного отжига.

для слоевой проводимости g полупроводника:

встроенный потенциал v(z) внутри слоя пространственного заряда имеет вид:

где ε - диэлектрическая постоянная полупроводника, a z - расстояние от поверхности.

Рис. 6. Сопротивление образца Si (111)7x7, измеренное	четырех- зондовым методом, как функция	расстояния между зондами. Вставки схематически показывают распределение тока в образце при использовании четырехзондового метода при различных расстояниях между зондами. Серой сплошной полосой показана расче
Слайд 12

Рис. 6. Сопротивление образца Si (111)7x7, измеренное четырех- зондовым методом, как функция расстояния между зондами. Вставки схематически показывают распределение тока в образце при использовании четырехзондового метода при различных расстояниях между зондами. Серой сплошной полосой показана расчетная зависимость для полубесконечного образца R = ρ/2πd с удельным сопротивлением ρ = 5-15 Ом·см

«Профили» сопротивления на поверхностях б - Si(111)31/2x31/2-Ag; в - Si( 111)7x7, измеренные с помощью микрозондов (расстояние между зондами 8 мкм) поперек макроступеней. Морфология поверхности образцов изображена схематически в нижней части графиков. Сопротивление, измеренное поперек ступени, много
Слайд 13

«Профили» сопротивления на поверхностях б - Si(111)31/2x31/2-Ag; в - Si( 111)7x7, измеренные с помощью микрозондов (расстояние между зондами 8 мкм) поперек макроступеней. Морфология поверхности образцов изображена схематически в нижней части графиков. Сопротивление, измеренное поперек ступени, много выше, чем измеренное на террасе без ступеней.

Рис. 7. а - СЭМ изображение микрозондов в контакте с поверхностью. Более яркие полоски на поверхности образца соответствуют макроступеням, более широкие темные полосы террасам.

Работа выхода. Рис. 8. Энергетическая схема электронных уровней металла в модели свободных электронов. ЕF — есть энергия Ферми: ф — работа выхода: W — глубина потенциальной ямы, в которой находятся валентные электроны твердого тела. - сила изображения
Слайд 14

Работа выхода

Рис. 8. Энергетическая схема электронных уровней металла в модели свободных электронов. ЕF — есть энергия Ферми: ф — работа выхода: W — глубина потенциальной ямы, в которой находятся валентные электроны твердого тела.

- сила изображения

Рис. 9. Общий вид эквипотенциальных линий двойного электрического слоя. Если центр этого слоя принять за плоскость поверхности, то она должна совпадать с положением потенциальной ступеньки.
Слайд 15

Рис. 9. Общий вид эквипотенциальных линий двойного электрического слоя. Если центр этого слоя принять за плоскость поверхности, то она должна совпадать с положением потенциальной ступеньки.

Таблица 1. Экспериментальные величины работы выхода для некоторых металлов
Слайд 16

Таблица 1. Экспериментальные величины работы выхода для некоторых металлов

Рис. 10. Изменения работы выхода, вызванные адсорбцией, а - хлора; б - цезия на поверхности Cu(111). Работа выхода чистой поверхности Cu(111) составляет 4,88 эВ.
Слайд 17

Рис. 10. Изменения работы выхода, вызванные адсорбцией, а - хлора; б - цезия на поверхности Cu(111). Работа выхода чистой поверхности Cu(111) составляет 4,88 эВ.

Рис. 11. Схематическая зонная диаграмма для поверхности полупроводника, ф - работа выхода, χ - сродство к электрону, eVs - изгиб зон, Еv - потолок валентной зоны, ЕC - дно зоны проводимости, a Ef - уровень Ферми. Работа выхода полупроводников
Слайд 18

Рис. 11. Схематическая зонная диаграмма для поверхности полупроводника, ф - работа выхода, χ - сродство к электрону, eVs - изгиб зон, Еv - потолок валентной зоны, ЕC - дно зоны проводимости, a Ef - уровень Ферми

Работа выхода полупроводников

Полевая эмиссия. Рис. 10. Диаграмма потенциальной энергии для электрона вблизи поверхности металла в присутствии внешнего электрического поля, напряженности F. Суммарный потенциал (показан сплошной линией) равен сумме потенциала изображения (показан пунктирной линией) и потенциала приложенного поля
Слайд 19

Полевая эмиссия.

Рис. 10. Диаграмма потенциальной энергии для электрона вблизи поверхности металла в присутствии внешнего электрического поля, напряженности F. Суммарный потенциал (показан сплошной линией) равен сумме потенциала изображения (показан пунктирной линией) и потенциала приложенного поля (показан штриховой линией), ф - работа выхода в отсутствие приложенного поля. Уменьшение потенциала на величину δф из-за эффекта Шотки отмечено, z0 - положение максимума суммарного потенциала.

Плотность тока j для этого процесса описывается выражением Фоулера-Нордгейма: где F - это приложенное напряжение в В /см, φ - работа выхода металла в эВ, а t(ξ) и f(ξ) - медленно меняющиеся функции безразмерного параметра ξ.
Слайд 20

Плотность тока j для этого процесса описывается выражением Фоулера-Нордгейма:

где F - это приложенное напряжение в В /см, φ - работа выхода металла в эВ, а t(ξ) и f(ξ) - медленно меняющиеся функции безразмерного параметра ξ.

Термоэлектронная эмиссия. Плотность термоэлектронного тока j с однородной поверхности металла при температуре Т описывается выражением Ричардсона-Дэшмана: где. а m и е - масса и заряд электрона, соответственно, h - постоянная Планка, а kв - постоянная Больцмана. Таблица 2. Величины работы выхода нек
Слайд 21

Термоэлектронная эмиссия.

Плотность термоэлектронного тока j с однородной поверхности металла при температуре Т описывается выражением Ричардсона-Дэшмана:

где

а m и е - масса и заряд электрона, соответственно, h - постоянная Планка, а kв - постоянная Больцмана.

Таблица 2. Величины работы выхода некоторых граней кристалла вольфрама, определенные в экспериментах по полевой эмиссии и термоэлектронной эмиссии.

Фотоэлектронная эмиссия. Фототок насыщения из однородного металла при температуре Т описывается выражением Фоулера: где В - параметр, зависящий от материала, а f - универсальная функция Фоулера.
Слайд 22

Фотоэлектронная эмиссия.

Фототок насыщения из однородного металла при температуре Т описывается выражением Фоулера:

где В - параметр, зависящий от материала, а f - универсальная функция Фоулера.

Список похожих презентаций

Жидкое состояние вещества. Свойства поверхности жидкости

Жидкое состояние вещества. Свойства поверхности жидкости

Цель урока:. познакомится со свойствами поверхностного слоя жидкости; сформировать понятие о коэффициенте поверхностного натяжения; совершенствовать ...
Свойства поверхности жидкости

Свойства поверхности жидкости

Цели:. Познавательная: познакомить учащихся со свойствами поверхностного слоя жидкости; сформировать понятие о коэффициенте поверхностного натяжения; ...
Электромагнитные волны и их свойства

Электромагнитные волны и их свойства

Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. шкала электромагнитных волн. Вся шкала ...
Физико-химические свойства огнеупоров

Физико-химические свойства огнеупоров

2. Прочностные свойства 2.1 Механическая прочность Огнеупоры при комнатной температуре характеризуется хрупким разрушением при сжатии. В качестве ...
Уравнение Максвелла и его свойства

Уравнение Максвелла и его свойства

. . . . Рассмотрим цепь переменного тока, содержащую плоский конденсатор. . . . - Закон полного тока. . . . Закон полного тока. Теорема Гаусса. . ...
Удивительные свойства воды

Удивительные свойства воды

Картины Айвазовского. фотофото. Фотосессия капельки. Великая тайна воды. Поскольку вода составляет основу всех живых объектов, она и есть главный ...
Сила трения и её полезные свойства

Сила трения и её полезные свойства

Аннотация. Данный проект даёт чёткое представление о силе трения, её видах, полезных свойствах и примененияи её в нашей жизни. Цель: исследовать факторы, ...
Полупроводники и их свойства

Полупроводники и их свойства

Полупроводники Полупроводниковый диод Рекомбинация Собственная проводимость Проводники IV группы Решетка германия Примеси Сильно легированные полупроводники ...
Магнитное поле и его свойства

Магнитное поле и его свойства

Девиз урока: «Скажи мне - и я забуду, покажи мне - и я запомню, вовлеки меня - и я научусь». Образовательные цели урока: проследить историю развития ...
Квантовые свойства света

Квантовые свойства света

Формула Планка: Е = h ν. Постоянная Планка. h = 6, 626 * 10 – 34 Дж c. Фотоэффект. выбивание электронов из металла частицами света – фотонами (квантами, ...
Квантовые свойства света

Квантовые свойства света

Компьютерным вирусом называется программа, способная создавать свои копии (не обязательно полностью совпадающие с оригиналом) и внедрять их в различные ...
Волновые и квантовые свойства света

Волновые и квантовые свойства света

17 век Две теории света:. Корпускулярная Свет – это поток частиц (корпускул), идущих от источника света. Сторонник теории: Исаак Ньютон. Волновая ...
Водяной пар и его свойства

Водяной пар и его свойства

Сублимацией (возгонкой) называется процесс перехода вещества из твердого состояния в газообразное. Обратный процесс перехода газа в твердое состояние ...
Виды излучений и их свойства

Виды излучений и их свойства

Содержание. Виды излучений. Свойства. Применение. Виды излучений. В настоящее время мы знаем 6 видов излучения - гамма-излучение, рентгеновское излучение, ...
Электронные средства наблюдения

Электронные средства наблюдения

УЧЕБНЫЕ ВОПРОСЫ. Физические основы устройства оптико-электронных средств (ОЭС) наблюдения. Особенности устройства и принцип действия современных тепловизионных ...
Магнитные свойства вещества

Магнитные свойства вещества

Гипотеза Ампера Андре Ампер. Магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него. Магнитные взаимодействия – ...
Аномальные свойства воды

Аномальные свойства воды

Аномальные свойства воды. Удивительное вещество. Исследуя воду и, особенно ее водные растворы, ученые раз за разом убеждались, что вода обладает ненормальными ...
Магнитные свойства вещества

Магнитные свойства вещества

Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Индукция магнитного поля, ...
Радиация и ее свойства

Радиация и ее свойства

Радиация. Альфа- излучения- состоят из альфа частиц(ядер гелия).Эти частицы распространяются на расстояния не более 10 см. Они полностью поглощаются ...
Магнитные свойства вещества

Магнитные свойства вещества

Согласно гипотезе Ампера в любом теле существуют микротоки, обусловленные движением электронов Вс –собственное магнитное поле Во – внешнее магнитное ...

Конспекты

Электромагниты, их свойства и применение

Электромагниты, их свойства и применение

Урок по теме: Электромагниты, их свойства и применение. План-конспект урока. Цель урока. : актуализировать знания  . об устройстве и принципе ...
Общие свойства металлов

Общие свойства металлов

Орлова Ольга Дмитриевна. . Аннотация. . Урок по теме «Общие свойства металлов». (9 класс, тема 5. «Общие свойства металлов»; программа курса ...
Электромагниты, их свойства и применение

Электромагниты, их свойства и применение

Электромагниты, их свойства и применение. Конспект деловой игры для 8 класса. Ц е л ь у р о к а: Продолжить развитие навыков самостоятельной работы ...
Магнитное поле, его свойства

Магнитное поле, его свойства

Магнитное поле, его свойства. Цели урока:. - повторение, углубление и систематизация имеющихся у учащихся сведений о магнитных явлениях и магнитном ...
Квантово - волновой дуализм или волновые и квантовые свойства света и вещества

Квантово - волновой дуализм или волновые и квантовые свойства света и вещества

Урок – семинар. Орлова Н.Г. – учитель физики МБОУ «Тучковская СОШ №3». Тема урока:. « Квантово - волновой дуализм или волновые и квантовые свойства ...
Волновые свойства света

Волновые свойства света

Урок физики в 11 классе в разделе «Оптика». Тема:. «Волновые свойства света». Цели:. 1. Познавательная: при помощи физического эксперимента познакомить ...
Волновые и квантовые свойства света

Волновые и квантовые свойства света

ФИЗИКА. Открытый урок по теме:. “Волновые и квантовые свойства света”. . . (обобщающий урок). Урок проводился для учителей города Курска. ...
Вода и ее свойства

Вода и ее свойства

. МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №12 ЗАТО ШИХАНЫ САРАТОВСКОЙ ОБЛАСТИ». Конспект. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:9 июня 2019
Категория:Физика
Содержит:22 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации