- Основные положения, идеальный газ

Презентация "Основные положения, идеальный газ" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34

Презентацию на тему "Основные положения, идеальный газ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 34 слайд(ов).

Слайды презентации

История. Левкит и Демокрит (379 г. до н.э.) – вещество из атомов (от греческого слова неделимый). Теория теплорода – невидимое и невесомое вещество которое входит и выходит из тела при нагреве и охлаждении. Существовала до 18-19 в.в. но такие термины как количество теплоты, теплоемкость используются
Слайд 1

История

Левкит и Демокрит (379 г. до н.э.) – вещество из атомов (от греческого слова неделимый). Теория теплорода – невидимое и невесомое вещество которое входит и выходит из тела при нагреве и охлаждении. Существовала до 18-19 в.в. но такие термины как количество теплоты, теплоемкость используются до сих пор. Ломоносов (1711-1765): тепловые явления необходимо объяснять движением и взаимодействием молекул. Впервые ввел деление на молекулы и атомы. Говорил о корпускулах .

Два подхода к изучению свойств вещества. Молекула (М)– мельчайшая, самостоятельно существующая частичка вещества, сохраняющая его химические свойства. М - состоит из атомов. Ar, He – одноатомные молекулы; О2 и N2 – 2-x атомные. А бывают и макромолекулы из тысяч атомов (витамины, белки, гормоны) и то
Слайд 2

Два подхода к изучению свойств вещества

Молекула (М)– мельчайшая, самостоятельно существующая частичка вещества, сохраняющая его химические свойства. М - состоит из атомов. Ar, He – одноатомные молекулы; О2 и N2 – 2-x атомные. А бывают и макромолекулы из тысяч атомов (витамины, белки, гормоны) и точная граница не известна. Размер молекулы воды ~3 Å~3 10-10м. Молекулярная физика изучает строение и свойства вещества исходя из молекулярнокинетической теории, базирующейся на трех положениях: Все вещества состоят из молекул и атомов; Все молекулы непрерывно и хаотически движутся; Молекулы взаимодействуют друг с другом.

Микроскопический и макроскопический подходы. Микроскопический подход – изучает молекулы и их малые совокупности. Использует законы механики для отдельных М. Законы механики необходимы, но недостаточны. Но для большого количества молекул возникают принципиально новые закономерности , которые не работ
Слайд 3

Микроскопический и макроскопический подходы

Микроскопический подход – изучает молекулы и их малые совокупности. Использует законы механики для отдельных М. Законы механики необходимы, но недостаточны. Но для большого количества молекул возникают принципиально новые закономерности , которые не работают для малого числа молекул. Для их описания и разработаны статистические методы которые развиваются в макроскопическом подходе. Макроскопический подход – описывает большие совокупности М (термодинамика и статистическая физика) . Статистическая физика описывает свойства макросистем (температуру и давление ) как усредненный (суммарный) результат действия всех молекул. Она интересуется не движением отдельных молекул, а лишь средними величинами, которые характеризуют движение огромной совокупности частиц.

Термодинамика. Другой подход к изучению свойств вещества  термодинамический. Термодинамика не интересуется тем, что происходит на микроуровне. Основой являются фундаментальные законы, называемые началами термодинамики. Начала термодинамики установлены из опыта, и при этом нет ни одного факта, вступ
Слайд 4

Термодинамика

Другой подход к изучению свойств вещества  термодинамический. Термодинамика не интересуется тем, что происходит на микроуровне. Основой являются фундаментальные законы, называемые началами термодинамики. Начала термодинамики установлены из опыта, и при этом нет ни одного факта, вступающего с ними в противоречие. Подходя к рассмотрению изменений состояния вещества с разных сторон, термодинамика и статистическая физика взаимно дополняют друг друга, образуя, по существу, одно целое. Данные подходы дополняют друг друга. Совпадение - критерий правильности.

Броуновское движение. Броуновским движением называют хаотическое движение малых частиц, взвешенных в жидкости или газе. Оно было открыто в 1827 году английским ботаником Броуном. Но количественно объяснить это явление в X1X веке не удалось никому! Но и качественное объяснение броуновского движения д
Слайд 5

Броуновское движение

Броуновским движением называют хаотическое движение малых частиц, взвешенных в жидкости или газе. Оно было открыто в 1827 году английским ботаником Броуном. Но количественно объяснить это явление в X1X веке не удалось никому! Но и качественное объяснение броуновского движения для молекулярной физики исключительно важно, так как является одним из экспериментальных доказательств основного положения молекулярно-кинетической теории – что все молекулы непрерывно и хаотически движутся. Это обусловлено тепловым движением М. Есть силы притяжения и отталкивания.

Изучение движения взвешенных частиц показало, что скорость движения частиц возрастает с повышением температуры и с уменьшением размеров частиц. Оказалось, что характер движения не зависит от свойств материала самих частиц, но зависит от свойств жидкости или газа, где они взвешены. Все наблюдаемые ос
Слайд 6

Изучение движения взвешенных частиц показало, что скорость движения частиц возрастает с повышением температуры и с уменьшением размеров частиц. Оказалось, что характер движения не зависит от свойств материала самих частиц, но зависит от свойств жидкости или газа, где они взвешены. Все наблюдаемые особенности движения броуновских частиц качественно легко объясняются именно непрерывным и хаотическим движением молекул среды, в которой движутся эти частицы: различие в количестве и силе ударов молекул с разных направлений дает равнодействующую силу, действующую на частицу и способную ее перемещать ввиду малости частицы.

Количественная теория броуновского движения. Количественную теорию броуновского движения удалось создать только Эйнштейну и, независимо, Смолуховскому в 1905 году. Они получили выражение для среднего значения квадрата смещения броуновской частицы за время Δt в зависимости от размеров частицы, вязкос
Слайд 7

Количественная теория броуновского движения

Количественную теорию броуновского движения удалось создать только Эйнштейну и, независимо, Смолуховскому в 1905 году. Они получили выражение для среднего значения квадрата смещения броуновской частицы за время Δt в зависимости от размеров частицы, вязкости среды и ее температуры. В 1909 году Перрен провел экспериментальную проверку этой формулы и она была полностью подтверждена.

Ланжевен предложил уравнение, описывающее движение броуновской частицы с учетом соударений частиц γ- вязкость. Уравнение используется для изучения флуктуаций молекул в системах, включая неравновесную термодинамику
Слайд 8

Ланжевен предложил уравнение, описывающее движение броуновской частицы с учетом соударений частиц γ- вязкость. Уравнение используется для изучения флуктуаций молекул в системах, включая неравновесную термодинамику

Факультативно: Исследователи научились «слушать» броуновское движение. Как «услышать» микромир? Используем уже упоминавшийся ранее лазерный пинцет! Лазерный пинцет может удерживать объекты микромира и манипулировать ими. Объекты притягиваются к лазерному лучу, взаимодействуя с создаваемым им электри
Слайд 9

Факультативно: Исследователи научились «слушать» броуновское движение

Как «услышать» микромир? Используем уже упоминавшийся ранее лазерный пинцет! Лазерный пинцет может удерживать объекты микромира и манипулировать ими. Объекты притягиваются к лазерному лучу, взаимодействуя с создаваемым им электрическим полем. Авторы использовали несколько лучей которые окружали кольцом молекулу. Звуковые волны, исходящие от объекта, воздействовали на проходящие сквозь толщу воды лучи. Камеры фиксировали изменения лучей. Анализируя информации помог восстановить издаваемые объектами звуки. Авторам удалось записать звуки, производимые при броуновском движении объектов. В будущем исследователи не исключают, что с помощью новой технологии они смогут услышать, какие звуки издают бактериальные клетки при воздействии лекарственных препаратов.

Факультативно: Броуновский холодильник. Физики-теоретики утверждают, что возможно построить крошечный холодильник, которым будет управлять броуновское движение – беспорядочное движение маленьких частиц, которое происходит при столкновении с окружающими молекулами. Идею предложили Крис Ван ден Брок (
Слайд 10

Факультативно: Броуновский холодильник

Физики-теоретики утверждают, что возможно построить крошечный холодильник, которым будет управлять броуновское движение – беспорядочное движение маленьких частиц, которое происходит при столкновении с окружающими молекулами. Идею предложили Крис Ван ден Брок (Chris Van den Broeck, Hasselt University, Belgium) и Риочи Кавай (Ryoichi Kawai, the University of Alabama, US). Если ее удастся реализовать, то прибор размером с молекулу будет самым маленьким в мире холодильником, который можно будет использован для охлаждения будущих устройств наноразмера. Сначала был изготовлен микроскопический мотор, который преобразует броуновское движение в механическую работу.

Броуновский холодильник. резервуаре – это простые лопатки, а в другом имеют клиновидную форму. Молекулы газа хаотично ударяют по плоским лопастям и могут поворачивать клиновидные лопасти в сторону острого конца клина. Стержень будет автоматически двигаться в одном направлении, одновременно выравнива
Слайд 11

Броуновский холодильник

резервуаре – это простые лопатки, а в другом имеют клиновидную форму. Молекулы газа хаотично ударяют по плоским лопастям и могут поворачивать клиновидные лопасти в сторону острого конца клина. Стержень будет автоматически двигаться в одном направлении, одновременно выравнивая температуру в емкостях или перемещая тепло от сосуда с высокой температурой к сосуду с низкой температурой.

Это стержень, помещенный между двумя емкостями с различной температурой. Лопасти на стержне в одном

Идеальный газ. Идеальный газ отличается от реального двумя свойствами: силы взаимодействия между молекулами в идеальном газе равны нулю (т.е. нет сил Ван-дер-Ваальса и собственный объем молекул идеального газа также равен нулю. Взаимодействие между молекулами такого газа сводится к коротким соударен
Слайд 12

Идеальный газ

Идеальный газ отличается от реального двумя свойствами: силы взаимодействия между молекулами в идеальном газе равны нулю (т.е. нет сил Ван-дер-Ваальса и собственный объем молекул идеального газа также равен нулю. Взаимодействие между молекулами такого газа сводится к коротким соударениям твердых упругих шариков. Закон сохранения кинетической энергии выполняется при соударении. А потенциальная мала так как мало время соударения. Плотность газа 10-3 жидкости. Коротко: идеальный газ – это невзаимодействующие материальные точки. Возможно ли описание реального газа как идеального? Да, если среднее расстояние между молекулами велико, что позволяет пренебречь взаимодействием молекул и их собственным объемом.

Закон Амедео Авогадро 1811 г. По соглашению 1960 г. все сравнивается с 1/12 массы атома изотопа углерода 12С (mC=1.995 10-26 кг, mC/12=1.66 10-27 кг – а.е.м.- атомная единица массы). С 1971г. седьмая основная величина моль –единица количества вещества (чуть позже введем еще Кельвин, а Канделлу и Амп
Слайд 13

Закон Амедео Авогадро 1811 г.

По соглашению 1960 г. все сравнивается с 1/12 массы атома изотопа углерода 12С (mC=1.995 10-26 кг, mC/12=1.66 10-27 кг – а.е.м.- атомная единица массы). С 1971г. седьмая основная величина моль –единица количества вещества (чуть позже введем еще Кельвин, а Канделлу и Ампер оставим на следующий семестр). Моль - количество вещества, которое содержит столько же структурных элементов (атомов, ионов или молекул), сколько атомов в mмоля С =0,012 кг 12С (1 моль 12С). Оно равно числу Авогадро NA=mмоль С/mC=6,022·1023 моль-1 Закон Авогадро: при одинаковых р и Т в равных V любого идеального газа содержится одинаковое число молей (строго работает только для идеального газа). Моль придумали химики (у нас СИ ввели в 1982 г. !)

Атомная и молярная масса. В нормальных условиях t=0o C и p=1атм=10,1·104 Па объем моля идеального газа Vмоля=RT/p=22,4 л/моль = (2 ведра/моль)=2,24·10-2 м3/моль, Число молекул в 1 м3–число Лошмидта NL=NA/Vмоля=2.69 1025 м-3 Относительная атомная масса А: отношение массы атома m к 1/12 массе атома 12
Слайд 14

Атомная и молярная масса

В нормальных условиях t=0o C и p=1атм=10,1·104 Па объем моля идеального газа Vмоля=RT/p=22,4 л/моль = (2 ведра/моль)=2,24·10-2 м3/моль, Число молекул в 1 м3–число Лошмидта NL=NA/Vмоля=2.69 1025 м-3 Относительная атомная масса А: отношение массы атома m к 1/12 массе атома 12С: А=Мотн=m/(mC/12). Молярная масса (масса одного моля)- масса вещества в количестве один моль μ=NAm=NAA mC/12=A mмоля С /12=А 0,012/12=А 10-3 кг/моль=А г/моль. Т.е. когда мы видим в таблице Менделеева А оно численно равно массе одного моля данного вещества в граммах . Чему равна молярная масса? Относительная масса всех химических элементов складывается из относительных масс атомов. 2H+1O => A=2x1.0079 +15.999≈18 => μH2O≈18 г/моль. Моль железа весит 55,847 г и занимает Vмоль Fe=7.09 см3(≈ одна столовая железная ложка!)

Закон Дальтона 1801. Давление смеси различных газов равно сумме парциальных давлений отдельных компонент смеси: p = p1 + p2 + p3 + … Парциальным давлением газа, входящего в состав газовой смеси (например, кислорода в воздухе), называется давление, которое оказывал бы газ, если бы он один занимал вес
Слайд 15

Закон Дальтона 1801

Давление смеси различных газов равно сумме парциальных давлений отдельных компонент смеси: p = p1 + p2 + p3 + … Парциальным давлением газа, входящего в состав газовой смеси (например, кислорода в воздухе), называется давление, которое оказывал бы газ, если бы он один занимал весь объем, занимаемый смесью. Закон Дальтона является естественным следствием идеальности рассматриваемого нами простейшего модельного газа: его молекулы «не видят» и «не чувствуют» молекулы других компонент смеси и, следовательно, не мешают друг другу оказывать свое давление.

Температура. Температура – степень нагретости. Как измерить? Ведь эталона нет и => используем принцип теплового равновесия. Т.е. предоставляем две системы , находящиеся в тепловом контакте сами себе. Со временем они придут в состояние теплового равновесия и => их температуры равны. Чтобы измер
Слайд 16

Температура

Температура – степень нагретости. Как измерить? Ведь эталона нет и => используем принцип теплового равновесия. Т.е. предоставляем две системы , находящиеся в тепловом контакте сами себе. Со временем они придут в состояние теплового равновесия и => их температуры равны. Чтобы измерить давайте одно из тел используем в качестве термометра. Температура связана с изменением средней скорости молекул , а сама температура прямо пропорциональна средней кинетической энергии Шкалы: Цельсия (при атмосферном давлении интервал между точками таяния льда и кипения воды разделен на 100 частей . Точка таяния льда взята за 00С а кипения 1000С. Фаренгейта (интервал между точками таяния льда и кипения воды разделен на 180 частей . Точка таяния льда взята за 320F а кипения 2120F , t0С= 5(t0F-320F)/9 Кельвина: t0С=(T-273,15)0K. C большой точностью совпадает со шкалой Цельсия 1С=1К. Названа в честь английского физика У. Томсона – лорда Кельвина, предложившего принцип организации температурной шкалы на основе второго начала термодинамики.

Закон Бойля-Мариотта. Английский физик Р.Бойль в 1662 и французский Э.Мариотт в 1676 г. экспериментально установили, что при Т=const и m=const произведение давления газа p на его объем V есть const: pV = const Процесс (при T=const) называется изотермическим. На графике в координатах p-V изотерма пре
Слайд 17

Закон Бойля-Мариотта

Английский физик Р.Бойль в 1662 и французский Э.Мариотт в 1676 г. экспериментально установили, что при Т=const и m=const произведение давления газа p на его объем V есть const:

pV = const Процесс (при T=const) называется изотермическим. На графике в координатах p-V изотерма представляет собой гиперболу.

Закон Шарля 1887 г. Для V=const и m=const отношение давления газа p к его температуре T есть const: p/T=const. Процесс (при V=const) называется изохорическим. Давление газа при изохорическом процессе пропорционально температуре – прямая линия в координатах p-T. Или p=p0(1+t). p0=p( при t=00C) . Шар
Слайд 18

Закон Шарля 1887 г.

Для V=const и m=const отношение давления газа p к его температуре T есть const: p/T=const. Процесс (при V=const) называется изохорическим. Давление газа при изохорическом процессе пропорционально температуре – прямая линия в координатах p-T. Или p=p0(1+t). p0=p( при t=00C) . Шарль утверждал , что коэффициент  не зависит от природы газа и ≈1/273. Отсюда и связь T(K) и t (0С). Сейчас установлено, что это работает только для идеальных. В области низких Т - жидкость.

0 p -2730C t0C

Закон Гей-Люссака 1892г. Для p=const и m=const отношение объема газа к его температуре есть const: β- коэффициент объемного расширения. V0=V( при t=00C). Процесс изменения состояния системы при постоянном давлении называется изобарическим. По Гей-Люссаку β как и у Шарля одинаков для всех газов и ≈1/
Слайд 19

Закон Гей-Люссака 1892г.

Для p=const и m=const отношение объема газа к его температуре есть const:

β- коэффициент объемного расширения. V0=V( при t=00C). Процесс изменения состояния системы при постоянном давлении называется изобарическим. По Гей-Люссаку β как и у Шарля одинаков для всех газов и ≈1/273 (в реальности только для идеальных). Французы потрудились , но начал все англичанин Бойль 1662 г. (т.е. 230 лет исследовали!). Как определить на практике идеальный газ ли нет? Если отклонения от этих законов невелики то =>идеальный газ.

Уравнение состояния идеального газа. p, V и Т связаны. Изменился один и => изменение двух других. Экспериментальные уравнения законов Бойля-Мариотта, Шарля и Гей-Люссака можно объединить в одно уравнение: Из этого уравнения каждый из трех законов получается как частный случай при постоянстве одно
Слайд 20

Уравнение состояния идеального газа

p, V и Т связаны. Изменился один и => изменение двух других. Экспериментальные уравнения законов Бойля-Мариотта, Шарля и Гей-Люссака можно объединить в одно уравнение:

Из этого уравнения каждый из трех законов получается как частный случай при постоянстве одного из параметров. Это выражение называют уравнением состояния идеального газа. Т.е. математическое выражение, связывающее p, V и T

Найдем значение константы в уравнении для одного моля газа, обозначив ее буквой R. Так как объем одного моля Vм при нормальных условиях известен, то значение R находится прямой подстановкой в уравнение. Константа R называется молярной газовой постоянной или универсальной газовой постоянной R. Итак,
Слайд 21

Найдем значение константы в уравнении для одного моля газа, обозначив ее буквой R. Так как объем одного моля Vм при нормальных условиях известен, то значение R находится прямой подстановкой в уравнение

Константа R называется молярной газовой постоянной или универсальной газовой постоянной R. Итак, уравнение состояния для одного моля можно записать: pVм = RT

Уравнением Клапейрона-Менделеева. Для произвольной массы M газа умножим обе части выражения на количество молей M/μ, где μ-молярная масса данного газа. Учитывая, что Vмоля , умноженное на количество молей есть просто объем газа V, получаем уравнение состояния для произвольнлй массы газа: Это выражен
Слайд 22

Уравнением Клапейрона-Менделеева

Для произвольной массы M газа умножим обе части выражения на количество молей M/μ, где μ-молярная масса данного газа. Учитывая, что Vмоля , умноженное на количество молей есть просто объем газа V, получаем уравнение состояния для произвольнлй массы газа:

Это выражение называют уравнением Клапейрона-Менделеева. Умножим и разделим правую часть уравнения на число Авогадро NA:

Давление идеального газа. Пусть все М летят в направлении x (┴ стенки площадью S) одинаковой скоростью vx и давление на стенку сосуда обусловлено только ударами М. При ударе одной М массы m со скоростью vx изменение импульса стенки Δp=(-mvx)-(mvx)=-2mvx. За единицу времени Δt к единице поверхности д
Слайд 23

Давление идеального газа

Пусть все М летят в направлении x (┴ стенки площадью S) одинаковой скоростью vx и давление на стенку сосуда обусловлено только ударами М. При ударе одной М массы m со скоростью vx изменение импульса стенки Δp=(-mvx)-(mvx)=-2mvx. За единицу времени Δt к единице поверхности долетит nSvxΔt /2 М (делим на 2 так как вторая половина летит назад), находящихся в параллелепипеде длиной vxΔt (n-концентрация М, то есть число М в единице объема). В соответствии со 2-м законом Ньютона изменение импульса стенки Δp за единицу времени Δt равно действующей на нее силе F. Суммарный Δp, переданный стенке, получаем равным: Δp =FΔt= nmSvx2Δt F= Δp/Δt= nmSvx2

В системе хаос и все направления равноправны. Молекулы отклоняются в обе стороны с одинаковой вероятностью. Просто среднее отклонение =0 и надо работать со среднеквадратичными величинами. Скорость и импульс надо усреднять по 3 направлениям и брать среднеквадратичную скорость . Но так как средние зна
Слайд 24

В системе хаос и все направления равноправны. Молекулы отклоняются в обе стороны с одинаковой вероятностью. Просто среднее отклонение =0 и надо работать со среднеквадратичными величинами. Скорость и импульс надо усреднять по 3 направлениям и брать среднеквадратичную скорость . Но так как средние значения квадратов скоростей вдоль трех осей равны то Но давление p=F/S * и => получим: Это основное уравнение МКТ- обеспечивает связь макропараметра давления р c микропараметрами и со средним значением квадрата скорости *- на предыдущей стр. р обозначало импульс не путать!.

Основным уравнением МКТ. столкновения учитываются не явно через хаос. Скорости М идеального газа имеют 6 равновероятных направлений. давление ≡ импульсу, передаваемому стенке в 1 м2 за 1 с ≡ силе 1 Н действующей на стенку 1 м2. Прибор фиксирует среднюю силу, действующую на ед. площадь. При р= 1 атм.
Слайд 25

Основным уравнением МКТ

столкновения учитываются не явно через хаос. Скорости М идеального газа имеют 6 равновероятных направлений. давление ≡ импульсу, передаваемому стенке в 1 м2 за 1 с ≡ силе 1 Н действующей на стенку 1 м2. Прибор фиксирует среднюю силу, действующую на ед. площадь. При р= 1 атм. за одну секунду М испытывает несколько миллиардов столкновений . Т.е. решение даже на современном компьютере сложно => средними значениями. Давление газа можно выразить и через среднюю кинетическую энергию поступательного движения молекул газа : Обозначили как Е иначе путаница с температурой Т

Постоянная Больцмана. N=nV – общее число молекул в массе m газа, а k - постоянной Больцмана: Поделив обе части уравнения К-М на объем газа V и учитывая, что отношение N/V=n есть концентрацией молекул газа в единице объема запишем: Сравнив с выражением для давления газа получим, что средняя кинетичес
Слайд 26

Постоянная Больцмана

N=nV – общее число молекул в массе m газа, а k - постоянной Больцмана:

Поделив обе части уравнения К-М на объем газа V и учитывая, что отношение N/V=n есть концентрацией молекул газа в единице объема запишем:

Сравнив с выражением для давления газа получим, что средняя кинетическая энергия: Среднеквадратичная скорость М:

Степени свободы молекул. Числом степеней свободы системы называется количество независимых величин, которые задают положение системы в пространстве. Положение материальной точки задается тремя координатами, поэтому у нее три степени свободы. Эти три степени свободы соответствуют поступательному движ
Слайд 27

Степени свободы молекул

Числом степеней свободы системы называется количество независимых величин, которые задают положение системы в пространстве. Положение материальной точки задается тремя координатами, поэтому у нее три степени свободы. Эти три степени свободы соответствуют поступательному движению молекулы по каждому из трех направлений, поэтому и называются поступательными.

Чтобы задать положение в пространстве двухатомной «жесткой» молекулы (у которой расстояние между атомами не меняется) необходимо 5 независимых величин: три координаты центра масс и два угла, определяющие направление оси молекулы в пространстве. С течением времени углы могут меняться, то есть молекул
Слайд 28

Чтобы задать положение в пространстве двухатомной «жесткой» молекулы (у которой расстояние между атомами не меняется) необходимо 5 независимых величин: три координаты центра масс и два угла, определяющие направление оси молекулы в пространстве. С течением времени углы могут меняться, то есть молекула может и вращаться. Получается, что у двухатомной «жесткой» молекулы 5 степеней свободы, из них три поступательные и две вращательные.

Если же атомы в двухатомной молекуле связаны квазиупруго (расстояние между атомами может меняться), то для задания ее положения требуется шестая величина – расстояние между атомами. Так как вдоль этой оси молекулы возможны колебания атомов, то данная степень свободы называется колебательной. У треха
Слайд 29

Если же атомы в двухатомной молекуле связаны квазиупруго (расстояние между атомами может меняться), то для задания ее положения требуется шестая величина – расстояние между атомами. Так как вдоль этой оси молекулы возможны колебания атомов, то данная степень свободы называется колебательной. У трехатомной не жесткой молекулы 6 степеней свободы – три поступательные и три вращательные.

Теорема о равнораспределении энергии по степеням свободы. В статистической физике доказывается теорема о равнораспределении энергии по степеням свободы молекулы: в состоянии теплового равновесия на любую степень свободы – поступательную, вращательную и колебательную – в среднем приходится одинаковая
Слайд 30

Теорема о равнораспределении энергии по степеням свободы

В статистической физике доказывается теорема о равнораспределении энергии по степеням свободы молекулы: в состоянии теплового равновесия на любую степень свободы – поступательную, вращательную и колебательную – в среднем приходится одинаковая кинетическая энергия, равная ½kT. Иногда теорему о равнораспределении называют и законом равнораспределения.

Средняя кинетическая энергия. Но при наличии колебательной степени свободы возникает важная особенность. Как нам известно из теории колебаний гармонического осциллятора, его средняя кинетическая энергия колебаний равна средней потенциальной энергии колебаний. Следовательно, при накачке энергии в кол
Слайд 31

Средняя кинетическая энергия

Но при наличии колебательной степени свободы возникает важная особенность. Как нам известно из теории колебаний гармонического осциллятора, его средняя кинетическая энергия колебаний равна средней потенциальной энергии колебаний. Следовательно, при накачке энергии в колебательную степень свободы нам надо будет увеличивать и потенциальную и кинетическую энергию одновременно. Т.е. данная степень свободы обладает удвоенной энергоемкостью: на ее возбуждение требуется энергия, равная kT. Теперь мы можем обобщить выражение для средней кинетической энергии одноатомных молекул на случай и многоатомных молекул:

где число

Скорость броуновского движения. Физикам удалось экспериментально подтвердить для броуновских частиц известную теорему о равнораспределении кинетической энергии по степеням свободы (вернемся к ней позже). Теорема о равнораспределении кинетической энергии по степеням свободы связывает температуру сист
Слайд 32

Скорость броуновского движения

Физикам удалось экспериментально подтвердить для броуновских частиц известную теорему о равнораспределении кинетической энергии по степеням свободы (вернемся к ней позже). Теорема о равнораспределении кинетической энергии по степеням свободы связывает температуру системы и ее среднюю энергию. Для определения энергии частицы достаточно знать ее массу и скорость. Однако броуновские частицы слишком часто меняют направление и скорость своего движения. Ученые опять применили лазерный луч для исследования маленьких стеклянных шариков, плавающих в воздухе (столкновения частиц происходят реже чем в воде). Если определить параметры отражения частицами лазерного луча до того, как происходили столкновения и смогли оценить скорость движения частиц и определить их энергию.

Из современных исследований. Физики из Франции предложили новый метод для измерения постоянной Больцмана - с помощью лазерной спектроскопии. Современные методы позволяют определить ее с точностью до 2x10-6, например, измеряя скорость звука в аргоне. Среди других методов определения k можно назвать и
Слайд 33

Из современных исследований

Физики из Франции предложили новый метод для измерения постоянной Больцмана - с помощью лазерной спектроскопии. Современные методы позволяют определить ее с точностью до 2x10-6, например, измеряя скорость звука в аргоне. Среди других методов определения k можно назвать измерение шума резистора, определение диэлектрической постоянной газа, а также исследование излучения черного тела. Однако ни один из этих методов не достигает такой точности. Провести новые независимые измерения постоянной Больцмана собираются в МКМВ - Международном комитета мер и весов

Кельвин определяют как 1/273. Исследование очень чистой воды в области тройной точки позволяет в зависимости от разницы температур между абсолютным нулем и тройной точкой определить Кельвин с точностью лучше, чем 10-6 . Но дело в том, что каждый раз, когда требуется его точное определение, приходитс
Слайд 34

Кельвин определяют как 1/273. Исследование очень чистой воды в области тройной точки позволяет в зависимости от разницы температур между абсолютным нулем и тройной точкой определить Кельвин с точностью лучше, чем 10-6 . Но дело в том, что каждый раз, когда требуется его точное определение, приходится воссоздавать сложные физические условия. МКМВ собирается определить Кельвин через другие единицы СИ и фундаментальные константы. А именно – через секунду, которая определена с высокой степенью точности (до 10-6), и постоянную Больцмана.

Список похожих презентаций

Основные положения молекулярно-кинетической теории (МКТ). Абсолютная температура.

Основные положения молекулярно-кинетической теории (МКТ). Абсолютная температура.

Молекулярная физика. Раздел, в котором изучают свойства макроскопических тел в различных агрегатных состояниях на основе МКТ. Демокрит (около 460 ...
Идеальный газ в МКТ

Идеальный газ в МКТ

Установите соответствие:. 1. Молекулы движутся с огромными скоростями. 2. Тела сохраняют форму и объем. 3. Атомы колеблются около положения равновесия. ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

Цели урока:. Образовательные: сформулировать основные положения МКТ; раскрыть научное и мировоззренческое значение броуновского движения; установить ...
Идеальный газ в МКТ

Идеальный газ в МКТ

Знакомство с теорией достаточно разряженных газов. Доказательство того, что средняя скорость молекул зависит от движения всех частиц. Цель урока:. ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

Тема урока. Микропараметры вещества. 1. Молекулярная физика. 1.1. Основы МКТ План урока. 2. Размеры молекул. 3. Число молекул. 4. Масса молекулы. ...
Решение задач. Идеальный газ

Решение задач. Идеальный газ

ПОВТОРЕНИЕ. 1. Особенности идеального газа. 2. Макроскопические параметры 3. Микроскопические параметры 4. Среднеквадратичная скорость 5. Давление ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

МКТ молекулярно-кинетическая теория. объясняет физические явления и свойства тел с точки зрения их внутреннего микроскопического строения. На уроках ...
Основные газовые законы

Основные газовые законы

Цели урока:. изучить газовые законы; научиться объяснять законы с молекулярной точки зрения; изображать графики процессов; продолжить обучение решать ...
Основные положения МКТ

Основные положения МКТ

1.Все вещества состоят из мельчайших частиц(молекул, атомов ,элементарных частиц) 2. Частицы движутся 3. Частицы взаимодействуют. Вещество состоит ...
Основные положения МКТ

Основные положения МКТ

Молекулярно- кинетическая теория объясняет свойства макроскопических тел и тепловые процессы, протекающие в них, на основе представлений о том, что ...
Основные положения МКТ

Основные положения МКТ

Доказательство существования молекул: 1.Броуновское движение. . Доказательство существования молекул: 2. электронный микроскоп. Размеры молекул. Доказательство ...
Основные положения МКТ

Основные положения МКТ

Молекулярно-кинетическая теория. учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц ...
Основные понятия и определения электротехники

Основные понятия и определения электротехники

Электротехника –. область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях. Вещества (с точки ...
Основные понятия и законы электростатики

Основные понятия и законы электростатики

Электромагнитные силы – силы притяжения и отталкивания, возникающие между электрически заряженными частицами и телами. Электродинамика – раздел физики, ...
Основные понятия и законы динамики

Основные понятия и законы динамики

Относительность движения. Задание: Выяснить - в чём основное отличие геоцентрической и системы от гелиоцентрической? Аристотель 384 - 322 г. до н. ...
Основные понятия и законы динамики

Основные понятия и законы динамики

Галилео Галилей (1564-1642). На основе экспериментальных исследований движения шаров по наклонной плоскости. Скорость любого тела изменяется только ...
Оптика. Основные законы геометрической оптики

Оптика. Основные законы геометрической оптики

Основные законы геометрической оптики. Закон прямолинейного распространения света Закон отражения света Закон преломления света. относительный показатель ...
Основные законы электротехники

Основные законы электротехники

65 I11 – 25 I22 – 30I33 = 80 – 25 I22 – 75 I22 – 35I33 = – 50 – 30 I33 – 35 I11 – 85I22 = 60. Решить систему трех уравнений с тремя неизвестными с ...
Основные понятия механического движения

Основные понятия механического движения

Основные понятия механического движения. Презентацию приготовил учитель МОУ Купавинская СОШ №22 Черепанова Светлана Викторовна. Механическое движение ...
Основные направления эконофизики. Фрактальный анализ финансовых рядов

Основные направления эконофизики. Фрактальный анализ финансовых рядов

Эконофизика. Этапы развития. 1995 1997 2001 2002 2009 Настоящее время. Появление термина для обозначения работ специалистов по статфизике в области ...

Конспекты

Основные положения молекулярно-кинетической теории и ее опытное подтверждение.Масса и размеры молекул

Основные положения молекулярно-кинетической теории и ее опытное подтверждение.Масса и размеры молекул

Бегимбаева Жумагуль Купжасаровна. Учитель физики сш №5. Актюбинская область. . Города Шалкар. Тема урока:. "Основные положения ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

Обобщающий урок по теме «Основные положения молекулярно-кинетической теории». Цель урока. : обобщение знаний по основным положениям МКТ. Задачи ...
Основные положения молекулярно – кинетической теории

Основные положения молекулярно – кинетической теории

Тема: Основные положения молекулярно – кинетической теории. Цель урока. : 1.Учащиеся смогут описывать тепловые явления с помощью статического метода, ...
Основные сведения о строении атома

Основные сведения о строении атома

Конспект урока с применением ЛСМ (логико-смысловой модели). Тема «Основные сведения о строении атома». . 11 класс (базовый уровень). Цель: ...
Большой взрыв. Основные этапы эволюции Вселенной

Большой взрыв. Основные этапы эволюции Вселенной

. Предмет физика. 11 кл. Тема:. Большой взрыв. Основные этапы эволюции Вселенной. . . Цель:. Обучающая :. познакомить учащихся. с понятием ...
Атмосферное давление. Основные пояса атмосферного давления на Земле

Атмосферное давление. Основные пояса атмосферного давления на Земле

Разработка урока для 6 класса. . Учитель Загария Ирина Владимировна. СОШ № 34 г. Енакиево Донецкая область Украина. Тема:. Атмосферное давление. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 мая 2019
Категория:Физика
Содержит:34 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации