- Основные понятия и законы электростатики

Презентация "Основные понятия и законы электростатики" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33

Презентацию на тему "Основные понятия и законы электростатики" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 33 слайд(ов).

Слайды презентации

Тема 1. Основные понятия и законы электростатики. 1. Электродинамика, электрические заряды, закон сохранения электрических зарядов Закон Кулона Электростатическое поле и его характеристики Теорема Остроградского - Гаусса Потенциал. Работа электростатического поля. Связь между напряжённостью и потенц
Слайд 1

Тема 1. Основные понятия и законы электростатики

1. Электродинамика, электрические заряды, закон сохранения электрических зарядов Закон Кулона Электростатическое поле и его характеристики Теорема Остроградского - Гаусса Потенциал. Работа электростатического поля. Связь между напряжённостью и потенциалом Литература Трофимова Т.И. Курс физики. – § 77 – 86. Савельев И. В. Курс общей физики, том 2. - § 1 – 12 Касьянов В. А. Физика. 10 класс. - § 75 - 84

Электромагнитные силы – силы притяжения и отталкивания, возникающие между электрически заряженными частицами и телами. Электродинамика – раздел физики, изучающий электромагнитное взаимодействие электрически заряженных частиц и тел. Электростатика – раздел электродинамики, в котором изучаются взаимод
Слайд 2

Электромагнитные силы – силы притяжения и отталкивания, возникающие между электрически заряженными частицами и телами.

Электродинамика – раздел физики, изучающий электромагнитное взаимодействие электрически заряженных частиц и тел. Электростатика – раздел электродинамики, в котором изучаются взаимодействие и свойства неподвижных электрически заряженных частиц и тел. Электрический заряд Q, q – физическая величина, определяющая силу электрического (электромагнитного) взаимодействия частиц или тел. Единица измерения – 1 Кл (кулон) = 1 А. с

Фундаментальные свойства зарядов. Существуют два вида электрических зарядов (положительные и отрицательные) Электрический заряд инвариантен Дискретен. Заряд любого тела составляет целое число, кратное элементарному заряду е = 1,6 . 10-19 Кл Аддитивен Закон сохранения заряда
Слайд 3

Фундаментальные свойства зарядов

Существуют два вида электрических зарядов (положительные и отрицательные) Электрический заряд инвариантен Дискретен. Заряд любого тела составляет целое число, кратное элементарному заряду е = 1,6 . 10-19 Кл Аддитивен Закон сохранения заряда

Электрон – носитель элементарного отрицательного заряда Q = - e = - 1,6 . 10-19 Кл m = 9,1 . 10-31 Кг Протон – носитель элементарного положительного заряда Q = + e = + 1,6 . 10-19 Кл m = 1,67 . 10-27 Кг Обычно тела электронейтральны Электризация - процесс заряжения тела
Слайд 4

Электрон – носитель элементарного отрицательного заряда Q = - e = - 1,6 . 10-19 Кл m = 9,1 . 10-31 Кг Протон – носитель элементарного положительного заряда Q = + e = + 1,6 . 10-19 Кл m = 1,67 . 10-27 Кг Обычно тела электронейтральны Электризация - процесс заряжения тела

Закон Кулона, 1785 г. – закон взаимодействия точечных зарядов. Точечный заряд – заряженное тело, размеры которого много меньше расстояний до других заряженных тел, с которыми оно взаимодействует. Сила взаимодействия F между двумя неподвижными точечными зарядами , находящимися в вакууме, прямо пропор
Слайд 5

Закон Кулона, 1785 г. – закон взаимодействия точечных зарядов. Точечный заряд – заряженное тело, размеры которого много меньше расстояний до других заряженных тел, с которыми оно взаимодействует.

Сила взаимодействия F между двумя неподвижными точечными зарядами , находящимися в вакууме, прямо пропорциональна произведению величин зарядов Q1 и Q2 , обратно пропорциональна квадрату расстояния между r 2 и направлена вдоль линии, соединяющей заряды.

← Электрическая постоянная
Слайд 6

← Электрическая постоянная

Закон Кулона для точечных зарядов, находящихся в диэлектрической среде (веществе). ε - диэлектрическая проницаемость среды. Величина, показывающая во сколько раз сила взаимодействия зарядов в среде F меньше, чем в вакууме F0. ε = F0 / F
Слайд 7

Закон Кулона для точечных зарядов, находящихся в диэлектрической среде (веществе).

ε - диэлектрическая проницаемость среды. Величина, показывающая во сколько раз сила взаимодействия зарядов в среде F меньше, чем в вакууме F0. ε = F0 / F

Электрическое (электромагнитное) поле – особый вид материи, посредством которого электрические заряды взаимодействую друг с другом. Электростатическое поле – электрическое поле, созданное неподвижными электрическими зарядами и не изменяющееся со временем. Основное свойство – действовать на другие эл
Слайд 8

Электрическое (электромагнитное) поле – особый вид материи, посредством которого электрические заряды взаимодействую друг с другом. Электростатическое поле – электрическое поле, созданное неподвижными электрическими зарядами и не изменяющееся со временем. Основное свойство – действовать на другие электрические заряды, находящиеся в нем. Пробный заряд Q0 – небольшой по величине, точечный положительный заряд, который не искажает исследуемое электрическое поле.

Напряженность электрического поля E – векторная физическая величина, численно равная силе, с которой поле действует на единичный положительный заряд, помещенный в данную точку поля. Направление вектора напряженности E совпадает с направлением вектора силы F , с которой поле действует на положительны
Слайд 9

Напряженность электрического поля E – векторная физическая величина, численно равная силе, с которой поле действует на единичный положительный заряд, помещенный в данную точку поля. Направление вектора напряженности E совпадает с направлением вектора силы F , с которой поле действует на положительный заряд. Единица измерения – 1 Н/Кл = 1 В/м

Напряженность поля точечного заряда Q. - в скалярной форме. - в векторной форме. - радиус – вектор, направленный от заряда Q в точку поля А. - единичный вектор
Слайд 10

Напряженность поля точечного заряда Q

- в скалярной форме

- в векторной форме

- радиус – вектор, направленный от заряда Q в точку поля А

- единичный вектор

Линии напряженности – линии, касательные к которым в каждой точке пространства (поля) совпадают с направлением вектора напряженности. Эти линии: указывают направление вектора напряженности напряженноcть поля E равна числу линий, проходящих через единичную площадку, перпендикулярную линиям начинаются
Слайд 11

Линии напряженности – линии, касательные к которым в каждой точке пространства (поля) совпадают с направлением вектора напряженности. Эти линии:

указывают направление вектора напряженности напряженноcть поля E равна числу линий, проходящих через единичную площадку, перпендикулярную линиям начинаются на положительных зарядах и заканчиваются только на отрицательных зарядах никогда не пересекаются

Линии напряженности. Линии напряженности полей, созданных точечными зарядами
Слайд 12

Линии напряженности

Линии напряженности полей, созданных точечными зарядами

Принцип суперпозиции электростатических полей. Напряженность результирующего поля E , создаваемого системой зарядов Qi , равна векторной сумме напряженностей полей Ei , создаваемых в данной точке каждым из зарядов в отдельности.
Слайд 13

Принцип суперпозиции электростатических полей

Напряженность результирующего поля E , создаваемого системой зарядов Qi , равна векторной сумме напряженностей полей Ei , создаваемых в данной точке каждым из зарядов в отдельности.

Поток ФЕ вектора напряженности E электрического поля через плоскую поверхность площадью S - величина, равная произведению модуля вектора E на площадь S и косинус угла α между векторами E и n (нормалью к поверхности). Единица измерения - 1 В . м. Проекция вектора E на направление вектора нормали n
Слайд 14

Поток ФЕ вектора напряженности E электрического поля через плоскую поверхность площадью S - величина, равная произведению модуля вектора E на площадь S и косинус угла α между векторами E и n (нормалью к поверхности). Единица измерения - 1 В . м

Проекция вектора E на направление вектора нормали n

- другая формула потока. - вектор площадки. Поток ФЕ численно равен количеству линий напряженности, пронизывающих поверхность S , является алгебраической величиной,
Слайд 15

- другая формула потока

- вектор площадки

Поток ФЕ численно равен количеству линий напряженности, пронизывающих поверхность S , является алгебраической величиной,

Определение потока напряженности ФЕ в неоднородном электрическом поле через произвольную (искривленную) поверхность S . поток напряженности через элементарную площадку dS. - вектор элементарной площадки
Слайд 16

Определение потока напряженности ФЕ в неоднородном электрическом поле через произвольную (искривленную) поверхность S .

поток напряженности через элементарную площадку dS

- вектор элементарной площадки

Вычисление потока ФЕ через замкнутую поверхность S
Слайд 17

Вычисление потока ФЕ через замкнутую поверхность S

Теорема Остроградского – Гаусса. Поток вектора напряженности электростатического поля E в вакууме сквозь замкнутую поверхность равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхности, деленной на εо. Теорема справедлива для любого распределения зарядов внутри любой замк
Слайд 18

Теорема Остроградского – Гаусса

Поток вектора напряженности электростатического поля E в вакууме сквозь замкнутую поверхность равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхности, деленной на εо

Теорема справедлива для любого распределения зарядов внутри любой замкнутой поверхности; заряды вне поверхности не учитываются.

Электрическое поле равномерно заряженной бесконечной плоскости. Вывод. величина заряда внутри цилиндра. Поток через цилиндр. Формулы - в вакууме - в среде с ε
Слайд 19

Электрическое поле равномерно заряженной бесконечной плоскости

Вывод

величина заряда внутри цилиндра

Поток через цилиндр

Формулы - в вакууме - в среде с ε

Поле двух бесконечных параллельных плоскостей, заряженных разноимённо. Поле системы есть суперпозиция полей, создаваемых каждой из плоскостей в отдельности. Поле однородное.
Слайд 20

Поле двух бесконечных параллельных плоскостей, заряженных разноимённо

Поле системы есть суперпозиция полей, создаваемых каждой из плоскостей в отдельности. Поле однородное.

Поле равномерно заряженной сферической поверхности. а) Область пространства на поверхности сферы и вне её. Если r ≥ R , то б) Область внутри сферы. Если r. Поле заряженной сферы совпадает с полем точечного заряда, равного заряду сферы и находящегося в центре сферы.
Слайд 21

Поле равномерно заряженной сферической поверхности

а) Область пространства на поверхности сферы и вне её. Если r ≥ R , то б) Область внутри сферы. Если r

Поле заряженной сферы совпадает с полем точечного заряда, равного заряду сферы и находящегося в центре сферы.

Потенциал. Работа электростатического поля. Электростатическое поле является потенциальным. Работа сил электростатического поля по перемещению электрического заряда не зависит от вида (формы) траектории, а определяется только начальным и конечным положениями заряда в поле. При перемещении в электрос
Слайд 22

Потенциал. Работа электростатического поля.

Электростатическое поле является потенциальным. Работа сил электростатического поля по перемещению электрического заряда не зависит от вида (формы) траектории, а определяется только начальным и конечным положениями заряда в поле. При перемещении в электростатическом поле заряда по замкнутой траектории работа сил поля равна нулю. Потенциальность электростатического поля имеет математическое определение с помощью понятия циркуляция вектора напряженности .

работа на элементарном перемещении. работа по перемещению единичного заряда. циркуляция вектора напряжённости электростатического поля по замкнутому контуру (кривой) L. Эта величина представляет собой полную работу А электрических сил по перемещению единичного положительного заряда Q0 = + 1Кл по зам
Слайд 23

работа на элементарном перемещении

работа по перемещению единичного заряда

циркуляция вектора напряжённости электростатического поля по замкнутому контуру (кривой) L

Эта величина представляет собой полную работу А электрических сил по перемещению единичного положительного заряда Q0 = + 1Кл по замкнутому пути ( вдоль кривой L )

Циркуляция вектора напряженности электростатического контура равна нулю. Работа электростатических сил по перемещению заряда Q из одного положения (точки 1) в другое положение (точку 2) равна убыли потенциальной энергии заряда и не зависит от пути перещения заряда. A12 = - ( U2 - U1) = U1 - U2
Слайд 24

Циркуляция вектора напряженности электростатического контура равна нулю

Работа электростатических сил по перемещению заряда Q из одного положения (точки 1) в другое положение (точку 2) равна убыли потенциальной энергии заряда и не зависит от пути перещения заряда. A12 = - ( U2 - U1) = U1 - U2

Потенциал электростатического поля φ - скалярная физическая величина, численно равная потенциальной энергии единичного положительного заряда, помещенного в данную точку поля. Единица измерения - 1 В = 1 Дж/Кл. Работа сил электростатического поля А12 равна произведению величины перемещаемого заряда Q
Слайд 25

Потенциал электростатического поля φ - скалярная физическая величина, численно равная потенциальной энергии единичного положительного заряда, помещенного в данную точку поля. Единица измерения - 1 В = 1 Дж/Кл.

Работа сил электростатического поля А12 равна произведению величины перемещаемого заряда Q на разность потенциалов в начальном (1) и конечном (2) положениях заряда.

Разность потенциалов между двумя точками 1 и 2 электростатического поля равна работе, совершаемой силами поля при перемещении единичного положительного заряда из одной точки поля (начальной) в другую точку поля (конечную). Второе определении потенциала. Потенциал поля в данной точке пространства – ф
Слайд 26

Разность потенциалов между двумя точками 1 и 2 электростатического поля равна работе, совершаемой силами поля при перемещении единичного положительного заряда из одной точки поля (начальной) в другую точку поля (конечную).

Второе определении потенциала. Потенциал поля в данной точке пространства – физическая величина, определяемая работой по перемещению единичного положительного заряда из данной точки поля в бесконечность.

Потенциал электростатического поля точечного заряда Q ( на расстоянии r от него ). ● Потенциал бесконечно удалённой точки считается равным нулю ● Эта формула выражает потенциал равномерно заряженного шара (или сферы) при r ≥ R, где R - радиус шара (или сферы)
Слайд 27

Потенциал электростатического поля точечного заряда Q ( на расстоянии r от него )

● Потенциал бесконечно удалённой точки считается равным нулю ● Эта формула выражает потенциал равномерно заряженного шара (или сферы) при r ≥ R, где R - радиус шара (или сферы)

Принцип суперпозиции для потенциалов. Потенциал результирующего поля, созданного системой электрических зарядов, равен алгебраической сумме потенциалов полей всех этих зарядов.
Слайд 28

Принцип суперпозиции для потенциалов

Потенциал результирующего поля, созданного системой электрических зарядов, равен алгебраической сумме потенциалов полей всех этих зарядов.

Связь между напряжённостью и потенциалом электростатического поля. Работа при перемещении заряда Q = +1 Кл из точки 1 в точку 2. E dl α 1 2
Слайд 29

Связь между напряжённостью и потенциалом электростатического поля

Работа при перемещении заряда Q = +1 Кл из точки 1 в точку 2

E dl α 1 2

В окрестности какой - либо точки электростатического поля потенциал поля φ наиболее быстро изменяется в направлении линии напряженности. dφ - изменение потенциала, вызванное перемещением единичного заряда на dl вдоль линии напряжённости - это величина (модуль) градиента потенциала grad φ электростат
Слайд 30

В окрестности какой - либо точки электростатического поля потенциал поля φ наиболее быстро изменяется в направлении линии напряженности.

dφ - изменение потенциала, вызванное перемещением единичного заряда на dl вдоль линии напряжённости - это величина (модуль) градиента потенциала grad φ электростатического поля, характеризующего быстроту изменения потенциала φ в пространстве

В векторном виде связь между напряженностью E и потенциалом φ имеет вид: Физический смысл. Напряжённость поля в данной точке (месте) электростатического поля измеряется уменьшением потенциала поля, приходящимся на единицу длины линии напряжённости.
Слайд 31

В векторном виде связь между напряженностью E и потенциалом φ имеет вид:

Физический смысл. Напряжённость поля в данной точке (месте) электростатического поля измеряется уменьшением потенциала поля, приходящимся на единицу длины линии напряжённости.

В случае однородного электростатического поля. φ1 и φ2 - потенциалы в точках 1 и 2 Δ l - расстояние между точками 1 и 2 вдоль линии напряжённости поля ( расстояние между эквипотенциальными поверхностями ). 3 + _
Слайд 32

В случае однородного электростатического поля

φ1 и φ2 - потенциалы в точках 1 и 2 Δ l - расстояние между точками 1 и 2 вдоль линии напряжённости поля ( расстояние между эквипотенциальными поверхностями )

3 + _

Эквипотенциальная поверхность - это поверхность, во всех точках которой потенциал φ имеет одинаковое значение. Работа, совершаемая при перемещении заряда по одной и той же эквипотенциальной поверхности, равна нулю. Линии напряжённости всегда перпендикулярны к ним. Эти поверхности проводят с определё
Слайд 33

Эквипотенциальная поверхность - это поверхность, во всех точках которой потенциал φ имеет одинаковое значение. Работа, совершаемая при перемещении заряда по одной и той же эквипотенциальной поверхности, равна нулю. Линии напряжённости всегда перпендикулярны к ним. Эти поверхности проводят с определённой густотой, так, чтобы разность потенциалов между любыми двумя соседними поверхностями была одинакова ( через 1 В ).

Список похожих презентаций

Основные понятия и законы динамики

Основные понятия и законы динамики

Галилео Галилей (1564-1642). На основе экспериментальных исследований движения шаров по наклонной плоскости. Скорость любого тела изменяется только ...
Основные понятия и законы динамики

Основные понятия и законы динамики

Относительность движения. Задание: Выяснить - в чём основное отличие геоцентрической и системы от гелиоцентрической? Аристотель 384 - 322 г. до н. ...
Основные законы электротехники

Основные законы электротехники

65 I11 – 25 I22 – 30I33 = 80 – 25 I22 – 75 I22 – 35I33 = – 50 – 30 I33 – 35 I11 – 85I22 = 60. Решить систему трех уравнений с тремя неизвестными с ...
Основные понятия механического движения

Основные понятия механического движения

Основные понятия механического движения. Презентацию приготовил учитель МОУ Купавинская СОШ №22 Черепанова Светлана Викторовна. Механическое движение ...
Основные понятия и определения, теплопроводность

Основные понятия и определения, теплопроводность

В зависимости от времени теплообмен может быть: стационарным, если температурное поле меняется во времени; стационарно-периодическим (тепловолны), ...
Светотехника. Основные понятия

Светотехника. Основные понятия

ПРЕДМЕТ ИЗУЧЕНИЯ СВЕТОТЕХНИКИ. Предметом изучения светотехники являются: - Оптическое излучение и его характеристики; - Источники оптического излучения; ...
Основные понятия ядерной физики

Основные понятия ядерной физики

Символическая запись ядра:. «X» – символ химического элемента «Z» - величина заряда (определяется количеством протонов в ядре (зарядовое число) ) ...
Основные понятия и величины, характеризующие волны

Основные понятия и величины, характеризующие волны

Тема: Основные понятия и величины, характеризующие волны. Цель: ? Морские волны служат хорошим примером колебательных движений и наглядно демонстрируют ...
Основные понятия и определения электротехники

Основные понятия и определения электротехники

Электротехника –. область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях. Вещества (с точки ...
Основные понятия кинематики

Основные понятия кинематики

Тот предмет, который считается неподвижным и относительно которого рассматривается движение других тел ,называют телом отсчета. Механическим движением ...
Основные газовые законы

Основные газовые законы

Цели урока:. изучить газовые законы; научиться объяснять законы с молекулярной точки зрения; изображать графики процессов; продолжить обучение решать ...
Оптика. Основные законы геометрической оптики

Оптика. Основные законы геометрической оптики

Основные законы геометрической оптики. Закон прямолинейного распространения света Закон отражения света Закон преломления света. относительный показатель ...
Алгоритм решения графических задач по теме "Газовые законы"

Алгоритм решения графических задач по теме "Газовые законы"

Дан график зависимости давления от температуры. Изобразить график этой зависимости в координатах P от V и V от T. Появление новых рисунков и записей ...
Фотоэффект и его законы

Фотоэффект и его законы

Фотоэффект и его законы. Теория фотоэффекта. Применение фотоэффекта. Гипотеза Планка. Атомы вещества излучают энергию отдельными порциями – квантами. ...
Уравнение состояния идеального газа. Газовые законы

Уравнение состояния идеального газа. Газовые законы

Макроскопические параметры – это…:. Масса, давление, объем, температура. давление, объем, температура. Состояние газа данной массы характеризуется ...
Сила и законы Ньютона

Сила и законы Ньютона

Первый закон Ньютона. Тело сохраняет состояние покоя до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Рисунки ...
Свет и его законы

Свет и его законы

Свет и его законы. МОУ-средняя общеобразовательная школа №2 города Искитима Новосибирской области. Презентацию подготовила Гильденбрандт Лилия Викторовна. ...
Ньютон и законы

Ньютон и законы

САМОЕ ВАЖНОЕ ЗНАЧЕНИЕ ЗАКОНОВ НЬЮТОНА. Опыты и наблюдения показывают, что причиной изменения движения тел, т. е. причиной изменения их скорости, являются ...
Основные положения, идеальный газ

Основные положения, идеальный газ

Два подхода к изучению свойств вещества. Молекула (М)– мельчайшая, самостоятельно существующая частичка вещества, сохраняющая его химические свойства. ...
газовые законы

газовые законы

Повторение. Перечислите основные положения МКТ. Дайте определение относительной молекулярной массы. Что такое количество вещества? Что такое молярная ...

Конспекты

Основные сведения о строении атома

Основные сведения о строении атома

Конспект урока с применением ЛСМ (логико-смысловой модели). Тема «Основные сведения о строении атома». . 11 класс (базовый уровень). Цель: ...
Физические явления и законы

Физические явления и законы

Фи­зи­че­ские явления и законы. 1. На ри­сун­ке пред­став­ле­ны гра­фи­ки за­ви­си­мо­сти сме­ще­ния . x.  гру­зов от вре­ме­ни . t.  при ко­ле­ба­ни­ях ...
Основные положения молекулярно-кинетической теории

Основные положения молекулярно-кинетической теории

Обобщающий урок по теме «Основные положения молекулярно-кинетической теории». Цель урока. : обобщение знаний по основным положениям МКТ. Задачи ...
Основные положения молекулярно-кинетической теории и ее опытное подтверждение.Масса и размеры молекул

Основные положения молекулярно-кинетической теории и ее опытное подтверждение.Масса и размеры молекул

Бегимбаева Жумагуль Купжасаровна. Учитель физики сш №5. Актюбинская область. . Города Шалкар. Тема урока:. "Основные положения ...
Молекулярная физика. Газовые законы

Молекулярная физика. Газовые законы

МОДЕКУЛЯРНАЯ ФИЗИКА. ГАЗОВЫЕ ЗАКОНЫ. (решение задач повышенной сложности). 10 класс. Учителя: Юдинцева Ольга Васильевна. ...
Основные положения молекулярно – кинетической теории

Основные положения молекулярно – кинетической теории

Тема: Основные положения молекулярно – кинетической теории. Цель урока. : 1.Учащиеся смогут описывать тепловые явления с помощью статического метода, ...
Изопроцессы. Газовые законы

Изопроцессы. Газовые законы

Подробный конспект урока. . Организационная информация. Тема урока. . Изопроцессы. Газовые законы. . . Предмет. . Физика. . ...
Изопроцессы. Газовые законы

Изопроцессы. Газовые законы

Тема урока:. "Изопроцессы. Газовые законы". Цели урока:. Создать условия по изучению изопроцессов термодинамических параметров, графики изопроцессов, ...
Газовые законы и их применение

Газовые законы и их применение

ИНТЕГРИРОВАННОЕ ЗАНЯТИЕ ПО ФИЗИКЕ. Учитель физики Бахчисарайской ОШ № 4, Республика Крым:. . Марынич Н.Н. Тип занятия. : комбинированный. Тема ...
Изопроцессы и их законы

Изопроцессы и их законы

МОБУ «Хрущевская СОШ им. А.И. Миронова». УРОК ФИЗИКИ. по теме. «Изопроцессы и их законы». для 10 класса. Учитель: Сорокина Е.В. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:4 марта 2019
Категория:Физика
Содержит:33 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации