- Электронно – лучевая трубка

Презентация "Электронно – лучевая трубка" (10 класс) по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10

Презентацию на тему "Электронно – лучевая трубка" (10 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Электронно – лучевая трубка. Работу выполнили: Ученики 10«А» класса МБОУ СОШ №1 Г. Оханска Владислав Аликин и Тимошков Михаил 2014г.
Слайд 1

Электронно – лучевая трубка

Работу выполнили: Ученики 10«А» класса МБОУ СОШ №1 Г. Оханска Владислав Аликин и Тимошков Михаил 2014г.

Электронно – лучевая трубка – электровакуумный прибор, в котором используется электронный пучок малого сечения, который может отклоняться в любом направлении, и, попадая на люминесцентный экран, создавать изображение.
Слайд 2

Электронно – лучевая трубка – электровакуумный прибор, в котором используется электронный пучок малого сечения, который может отклоняться в любом направлении, и, попадая на люминесцентный экран, создавать изображение.

ЭЛТ. С планарным расположением электронных пушек. Трехлучевые , с дельтаобразным расположением электронных пушек.
Слайд 3

ЭЛТ

С планарным расположением электронных пушек.

Трехлучевые , с дельтаобразным расположением электронных пушек.

Кинескоп. Кинескопом называется приемная электронно-лучевая трубка с люминофорным экраном, преобразующая мгновенные значения сигнала в последовательность световых импульсов. Развертывающим элементом кинескопа является сфокусированный электронный луч, а воспроизведение изображения обеспечивается откл
Слайд 4

Кинескоп

Кинескопом называется приемная электронно-лучевая трубка с люминофорным экраном, преобразующая мгновенные значения сигнала в последовательность световых импульсов. Развертывающим элементом кинескопа является сфокусированный электронный луч, а воспроизведение изображения обеспечивается отклонением луча по закону развертки и модуляцией его плотности сигналом изображения.

Устройство черно – белого кинескопа. Схематическое изображение кинескопа для черно-белого телевидения: 1 - нить подогревателя катода; 2 - катод; 3 - управляющий электрод; 4 ускоряющий электрод; 5 - первый анод; 6 - второй анод; 7 - проводящее покрытие (аквадаг); 8 - катушки вертикального отклонения
Слайд 5

Устройство черно – белого кинескопа

Схематическое изображение кинескопа для черно-белого телевидения: 1 - нить подогревателя катода; 2 - катод; 3 - управляющий электрод; 4 ускоряющий электрод; 5 - первый анод; 6 - второй анод; 7 - проводящее покрытие (аквадаг); 8 - катушки вертикального отклонения луча; 9 - катушки горизонтального отклонения луча; 10 - электронный луч; 11 - экран; 12 - вывод второго анода.

Устройство цветного кинескопа. 1 —Электронные пушки. 2 — Электронные лучи. 3 — Фокусирующая катушка. 4 — Отклоняющие катушки. 5 — Анод. 6 — Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 — Красные, зелёные и синие зёрна люминофора. 8 — Маска и зёрна люминофора
Слайд 6

Устройство цветного кинескопа

1 —Электронные пушки. 2 — Электронные лучи. 3 — Фокусирующая катушка. 4 — Отклоняющие катушки. 5 — Анод. 6 — Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 — Красные, зелёные и синие зёрна люминофора. 8 — Маска и зёрна люминофора

Принцип работы. Внутренняя поверхность стекла кинескопа покрыта люминофором. В трубке находятся электронные пушки, которые испускают электронные лучи. Эти лучи попадают на триады, заставляя точки светиться с различной интенсивностью. Эти точки в совокупности дают нужный оттенок цвета. На каждую точк
Слайд 7

Принцип работы

Внутренняя поверхность стекла кинескопа покрыта люминофором. В трубке находятся электронные пушки, которые испускают электронные лучи. Эти лучи попадают на триады, заставляя точки светиться с различной интенсивностью. Эти точки в совокупности дают нужный оттенок цвета. На каждую точку триады падает луч испускаемый определенной пушкой, то есть на зеленую точку падает луч испускаемый «зелёной» пушкой. Для достижения такого эффекта используются металлические решетки. Их строение зависит от типа кинескопа. Существуют три типа решеток: теневая, щелевая и апертурная. Вывод изображения на экран происходит следующим образом. Электронный луч проходит последовательно по всем точкам экрана слева направо и сверху вниз, заставляя точки светиться. Таким образом, на экране появляется изображение. Луч движется с такой скоростью, что точки не успевают погаснуть. Для стабильного и непрерывного изображения луч должен обегать весь экран не менее 25 раз в секунду, но при такой скорости изображение может мерцать. Для того чтобы оно не мерцало, скорость обегания луча должна быть не менее 75 раз в секунду. Кадровая частота телевизора измеряется обычно в герцах и во многом определяет устойчивость изображения. Чем выше частота кадров, тем устойчивее изображение. Частота строк в килогерцах определяется произведением частоты вертикальной развертки на количество выводимых строк в одном кадре (разрешающая способность по вертикали). Полоса видеосигнала, измеряемая в мегагерцах, определяет самые высокие частоты в видеосигнале. При построчном (non-interlaced) способе формирования изображения все строки кадра выводятся в течение одного периода кадровой развертки, при чересстрочном (interlaced) за один период кадровой развертки выводятся четные строки изображения, а за следующий — нечетные.

Теневая маска. Теневая маска создает решетку с однородными точками, где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Минимальное расстояние между люми
Слайд 8

Теневая маска

Теневая маска создает решетку с однородными точками, где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Минимальное расстояние между люминофорными элементами одинакового цвета называется шаг точки (dot pitch) и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах. Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изображения. Теневая маска применяется в большинстве современных мониторов

Апертурная решётка. Апертурная решётка — одна из двух основных технологий, используемых в кинескопах для синтеза изображения цветного телевидения. В приёмных трубках с апертурной решёткой используются тонкие вертикальные полоски люминофоров с разным цветом свечения: красным, зелёным и синим. Благода
Слайд 9

Апертурная решётка

Апертурная решётка — одна из двух основных технологий, используемых в кинескопах для синтеза изображения цветного телевидения. В приёмных трубках с апертурной решёткой используются тонкие вертикальные полоски люминофоров с разным цветом свечения: красным, зелёным и синим. Благодаря апертурной решётке, расположенной в непосредственной близости от экрана, электронные пучки трёх прожекторов, расположенных в одной плоскости (планарно), попадают только на полоски люминофора соответствующего цвета, осуществляя пространственный аддитивный синтез цвета. Такой принцип устройства получил наиболее широкую известность, благодаря кинескопам «Тринитрон» японской компании Sony Главными преимуществами технологии апертурной решётки считаются отсутствие кривизны экрана в вертикальной плоскости и более высокая прозрачность решётки по сравнению с теневой маской. Одной из важнейших характеристик качества является минимальное расстояние между одноцветными элементами триад. Чем она меньше, тем лучше качество изображения.

Увеличенное изображение буквы серого цвета на чёрном фоне на экране с апертурной решёткой.

Щелевая маска. Эта технология широко применяется компанией NEC. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорны
Слайд 10

Щелевая маска

Эта технология широко применяется компанией NEC. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. Минимальное расстояние между двумя ячейками называется щелевым шагом. Чем меньше значение щелевого шага, тем выше качество изображения на мониторе.

Список похожих презентаций

Электронно-лучевая трубка

Электронно-лучевая трубка

Автором сделана попытка анимации учебника ФИЗИКА – 10, авт. Мякишев Г.Я. (изд. 2008 г.). Все презентации выполнены в программе Microsoft Offic PowerPoint ...
Електронно променева трубка

Електронно променева трубка

Електро́нно-промене́ва тру́бка, кінескоп електронний прилад, який має форму трубки, видовженої (часто з конічним розширенням) в напрямку осі електронного ...
Сила трения физика

Сила трения физика

Определение. Сила трения - это сила, возникающая в плоскости касания тел при их относительном перемещении. Направление. Сила трения направлена противоположно ...
Тепловые двигатели физика

Тепловые двигатели физика

СОДЕРЖАНИЕ. Содержание Тепловой двигатель Тепловые машины и развитие техники Кто создал тепловые двигатели Виды тепловых двигателей Принцип работы ...
Простая и интересная физика у Вас дома

Простая и интересная физика у Вас дома

Содержание. Эксперименты на тепловые явления. Эксперимент на плотность. Научные забавы и прочие опыты. Как будут отпадать гвозди??? Вы ответили неверно!!! ...
Рентгеновские лучи физика

Рентгеновские лучи физика

Презентацию подготовила: Григорьвева Наталья. Руководитель: Баева Валентина Михайловна. Цель работы: узнать о жизни и изобретении великого ученого ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...
Оптика и атомная физика

Оптика и атомная физика

В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровым и заведующим кафедры оптики ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Атомная физика

Атомная физика

План урока 1. Из истории физики 2. Модель Томсона 3. Опыт Резерфорда 4. Противоречия 5.Постулаты Бора 6.Энергетическая диаграмма атома водорода 7. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.