- Динамика поступательного движения. Механика

Презентация "Динамика поступательного движения. Механика" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10

Презентацию на тему "Динамика поступательного движения. Механика" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Лекция 4
Слайд 1

Лекция 4

Динамика поступательного движения. Критерии: S, V, a, t, m, p (импульс), F. Закон сохранения импульса. Основной закон динамики поступательного движения. Законы Ньютона – Частные случаи закона сохранения импульса. Виды сил в механике: гравитационные силы (сила всемирного тяготения, вес тела, сила тяж
Слайд 2

Динамика поступательного движения. Критерии: S, V, a, t, m, p (импульс), F. Закон сохранения импульса. Основной закон динамики поступательного движения. Законы Ньютона – Частные случаи закона сохранения импульса. Виды сил в механике: гравитационные силы (сила всемирного тяготения, вес тела, сила тяжести), силы трения (сила трения покоя, скольжения, качения, силы сопротивления при движении в жидкостях и газах) 5. Законы сохранения импульса и энергии. Основные законы механики

1. Динамика – изучение движения с выяснением его причин. - импульс (количество движения) материальной точки (частицы), m – масса частицы, - скорость частицы. Масса – мера инертности тела. 2. Закон сохранения импульса: в замкнутой системе суммарный импульс – величина постоянная. закон сохранения импу
Слайд 3

1. Динамика – изучение движения с выяснением его причин. - импульс (количество движения) материальной точки (частицы), m – масса частицы, - скорость частицы. Масса – мера инертности тела. 2. Закон сохранения импульса: в замкнутой системе суммарный импульс – величина постоянная. закон сохранения импульса для замкнутой системы, где n – число частиц (или тел), входящих в систему. Формулы на основе закона сохранения импульса: координаты центра масс системы частиц, где mi- масса i-ой частицы, xi,yi,zi – ее координаты.

- уравнение движения тела переменной массы (уравнение Мещерского), где реактивная сила m – масса ракеты. - формула Циолковского для определения скорости ракеты, m0 – начальная массы ракеты.
Слайд 4

- уравнение движения тела переменной массы (уравнение Мещерского), где реактивная сила m – масса ракеты. - формула Циолковского для определения скорости ракеты, m0 – начальная массы ракеты.

Первый закон Ньютона гласит, что замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения. По сути, этот закон постулирует инертность тел. Это может казаться очевидным сейчас, но это не было очевидно на заре исследований природы. Так, например, Аристотель ут
Слайд 5

Первый закон Ньютона гласит, что замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения. По сути, этот закон постулирует инертность тел. Это может казаться очевидным сейчас, но это не было очевидно на заре исследований природы. Так, например, Аристотель утверждал, что причиной всякого движения является сила, т. е. у него не было движения по инерции. На что на самом деле влияет сила, диктует второй закон Ньютона: сила, действующая на систему извне, приводит к ускорению системы F = ma. Заметим, что если система замкнута, то на неё не действует никаких сил, следовательно, по второму закону Ньютона, её ускорение нуль, а значит, она может двигаться только с постоянной скоростью. Таким образом, первый закон Ньютона является частным случаем второго.

Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе — на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила
Слайд 6

Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе — на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия, F21 = −F12. Подчеркнём, что эти силы приложены к разным системам, а потому вовсе не компенсируются. Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, оказывается, что многие силы вокруг нас (в частности, поле сил гравитации) обладают свойством потенциальности: работа внешних сил по переносу тела из одной точки в другую не зависит от конкретного пути (на языке математики: ротор силового поля тождественно равен нулю). В этом случае силу (векторную величину) можно представить как градиент некоторой скалярной величины — потенциала. Для того чтобы третий закон Ньютона автоматически выполнялся, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1-r2|). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Гравитационное взаимодействие. Гравитационное взаимодействие — одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя т
Слайд 7

Гравитационное взаимодействие

Гравитационное взаимодействие — одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя телами массы m1 и m2, разделённых расстоянием R есть Здесь G — гравитационная постоянная, равная м3/(кг с2). ). Знак минус означает, что сила, действующая на тело, всегда противоположна по направлению радиус-вектору, направленному на тело, т. е. гравитационное взаимодействие приводит всегда к притяжению любых тел. Сила тяжести - сила, с которой тело притягивается к Земле. По закону всемирного тяготения на поверхности Земли на тело массой m действует сила тяжести, равная где M - масса земли, R - радиус Земли.

Силы трения возникают в плоскости соприкосновения тел и препятствуют их относительному движению. Причинами сил трения являются неровности поверхности и силы межмолекулярного взаимодействия. Трение играет как полезную, так и вредную роль. Трение покоя возникает при попытках вызвать движение одного те
Слайд 8

Силы трения возникают в плоскости соприкосновения тел и препятствуют их относительному движению. Причинами сил трения являются неровности поверхности и силы межмолекулярного взаимодействия. Трение играет как полезную, так и вредную роль. Трение покоя возникает при попытках вызвать движение одного тела по поверхности другого. Пусть на некое тело А, находящееся на поверхности, действует внешняя сила F, направленная параллельно плоскости соприкосновения. Сила F такова, что не может привести тело в движение. Следовательно, на тело действует равная ей по величине и противоположная по направлению сила трения покоя. Если возрастает внешняя сила F, то возрастает и сила трения покоя. Всегда Fтр. покоя = - F, но имеет предельное максимальное значение, равное Fтр. макс = m·N (скалярное равенство), где m - коэффициент трения, зависящий от материала и состояния поверхностей, N - сила нормального давления тела на опору, равная силе реакции опоры.

Трение скольжения возникает при скольжении одного тела по поверхности другого. Сила трения скольжения равна максимальной силе трения покоя Fтр = m·N. Она всегда направлена параллельно плоскости соприкосновения тел в сторону, противоположную возможному относительному перемещению тел. Сила трения каче
Слайд 9

Трение скольжения возникает при скольжении одного тела по поверхности другого. Сила трения скольжения равна максимальной силе трения покоя Fтр = m·N. Она всегда направлена параллельно плоскости соприкосновения тел в сторону, противоположную возможному относительному перемещению тел. Сила трения качения Сила трения качения - сила трения, возникающая при качении одного тела по поверхности другого тела. Сила Архимеда На тело погруженное в жидкость или газ действует выталкивающая сила, равная весу вытесненной жидкости FA = mж·g = rж·Vж·g где rж - плотность жидкости, Vж - объем вытесненной жидкости (который равен объему погруженной части тела), g -ускорение свободного падения Архимедова сила направлена противоположно силе тяжести, поэтому вес тела в жидкости или газе оказывается меньше веса, измеренного в вакууме.

Условия плавания тел: Если модуль силы тяжести равен модулю силы Архимеда, то тело плавает на любой глубине. Если сила тяжести по модулю больше силы Архимеда, то тело тонет. Если сила тяжести по модулю меньше силы Архимеда, то тело всплывает.
Слайд 10

Условия плавания тел: Если модуль силы тяжести равен модулю силы Архимеда, то тело плавает на любой глубине. Если сила тяжести по модулю больше силы Архимеда, то тело тонет. Если сила тяжести по модулю меньше силы Архимеда, то тело всплывает.

Список похожих презентаций

Кинематика прямого и поступательного движения

Кинематика прямого и поступательного движения

1. Параметры кинематики прямолинейного движения: пройденный путь, перемещение, средняя скорость, мгновенная скорость, ускорение. 2. Прямая задача ...
Механика вращательного движения

Механика вращательного движения

Рассмотрим производную . (1.41) Вектор есть по определению скорость тела, а . Поэтому первое слагаемое в (1.41) обращается в ноль как векторное произведение ...
Динамика вращательного движения

Динамика вращательного движения

Особенности вращательного движения твердого тела под действием внешних сил. Ускорение при вращательном движении зависит: - не только от массы тела, ...
Физика, автомобиль и правила дорожного движения

Физика, автомобиль и правила дорожного движения

План презентации. Общие сведения об автомобилях. Почему автомобиль движется? Задачи о движущемся автомобиле. Расчёт тормозного пути. Почему возникают ...
Теорема об изменении кинетической энергии и уравнения Лагранжа II рода как методы изучения движения механической системы

Теорема об изменении кинетической энергии и уравнения Лагранжа II рода как методы изучения движения механической системы

ОБ АВТОРЕ:. Родилась я 21 мая 1989 года, в городе Ангарске. По знаку зодиака я близнецы. С самого рождения люблю животных. В нашей школе учусь с первого ...
Скорость прямолинейного равноускоренного движения

Скорость прямолинейного равноускоренного движения

Цель: сформулировать признаки движения тела с постоянным ускорением. Научить решать графические задачи. Ход урока Проверка домашнего задания. Изучение ...
Скорость движения

Скорость движения

Рассмотрим движение материальной точки вдоль произвольной траектории. Отсчет времени начнем с момента, когда точка находилась в положении А. Длина ...
Расчёт пути и времени движения . Графическое представление движения. (2)

Расчёт пути и времени движения . Графическое представление движения. (2)

Упр. 4 (5). Дано: S1 =50 м t1 = 5 c S2 = 30 м t2 = 15 c Vср = ? Решение: Vср = (S1 + S2 ): (t1 + t2 )= (50 м+30м) : (5 с + 15 с) = 4 м/с Ответ: 4 ...
Относительность движения

Относительность движения

Содержание. 1. Цель урока 2. Повторение изученного материала 3. Задача №1 4. Классический закон сложения скоростей 5. Задача №2 6. Задача №3 7. Задача ...
Определение средней скорости моего движения

Определение средней скорости моего движения

Цель_проекта. «Определить свою среднюю скорость, определить весь пройденный путь за 11 лет обучения.». План_проекта. Определить расстояние до школы. ...
Динамика в физике

Динамика в физике

Автор презентации «Динамика» Помаскин Юрий Иванович - учитель физики МОУ СОШ№5 г. Кимовска Тульской области. Презентация сделана как учебно-наглядное ...
Динамика в Архитектуре

Динамика в Архитектуре

Неподвижные, статичные и незыблемые формы в течение многих веков считались определяющими характеристиками архитектуры как таковой. И, по большому ...
Динамика

Динамика

Механика. раздел физики, изучающий механическое движение. Механическое движение. Изменение положения тела в пространстве относительно других тел с ...
Динамика

Динамика

При каких условиях. Тело покоится? Движется равномерно? Изменяется скорость тела? a модуля направления. Причины способы изменения. Движения естественные ...
Динамика

Динамика

ВНИМАНИЕ! При решении тестов учесть, что:. А) I, II и III B) II и III C) III и IV D) Только II E) Только III. №1: Какая или какие из нижеприведенных ...
Виды движения

Виды движения

Бавкун Т.Н. МБОУ ОСОШ№3 г.Очер. Прямолинейное равномерное движение. ПР – движение при котором тело за равные промежутки времени проходит равные пути. ...
Механика от Аристотеля до Ньютона

Механика от Аристотеля до Ньютона

. Цель исследования: изучить этапы становления классической механики, а так же выяснить роль ученых в становлении данной физической теории. Задачи: ...
Описание механического движения

Описание механического движения

ВИДЕОРОЛИКИ. Только просмотр Система отсчета (1) Перемещение (2). МЕХАНИЧЕСКОЕ ДВИЖЕНИЕ. – изменение положения тела в пространстве с течением времени ...
Динамика материальной точки

Динамика материальной точки

Динамика до Ньютона. Учение Аристотеля. В 335 г. до н. э. отец-основатель физики Аристотель создал собственную научную школу-Ликей,-которой руководил ...
Относительность движения

Относительность движения

Пример. Пусть имеются две системы отсчета. Система XOY условно считается неподвижной, а система X'O'Y' движется поступательно по отношению к системе ...

Конспекты

Динамика колебательного движения

Динамика колебательного движения

Муниципальное казённое общеобразовательное учреждение. «Средняя общеобразовательная школа № 16» ИМРСК. открытый. Урок физики в 11 ...
Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц вещества

Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц вещества

Урок № 24 10 класс Дата______. Тема урока. : Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц ...
Скорость движения машин

Скорость движения машин

АВТОМОБИЛИ, скорость, км/ч. ЛиАЗ – 969 М. . 90. . . УАЗ -469. . 100. . . ЗАЗ -968 М. . 118. . . «Ока». . 120. . ...
Расчет пути и времени движения

Расчет пути и времени движения

Тема «Расчет пути и времени движения». Цели урока:. обучающиеся смогут. . -рассчитывать путь, время и скорость равномерного движения. -строить ...
Расчёт пути и времени движения

Расчёт пути и времени движения

ОГКУЗ «Детский санаторий г. Грайворон». . . Открытый урок. . по физике. ТЕМА: РАСЧЕТ ПУТИ И. . ВРЕМЕНИ ДВИЖЕНИЯ. Класс 7-й. Учитель:. ...
Расчет механического движения с использованием законов динамики

Расчет механического движения с использованием законов динамики

Тема урока –. Расчет механического движения с использованием законов динамики. . Дома. : повторить законы Ньютона, решить задачи № 318 (Л); № ...
Работа силы, действующей в направлении движения тела

Работа силы, действующей в направлении движения тела

Предмет Физика. Класс 7. Дата 5 марта 2014 года. . Урок №1. Тема урока: Работа силы, действующей в направлении движения тела. Цель урока:. ...
Практическая работа. Компьютерное моделирование движения точки

Практическая работа. Компьютерное моделирование движения точки

Физика – 10. Тема:. Практическая работа. Компьютерное моделирование движения точки . Цель урока:. - обеспечить усвоение учащимися моделирование ...
Относительность движения

Относительность движения

Урок №. 6. Предмет физика.10кл(ЕМ). Тема:. . Относительность движения. . Цель:. Обучающая :. объяснить понятие об относительности движения. ...
Механическое движение. Тело отсчета. Относительность движения

Механическое движение. Тело отсчета. Относительность движения

Урок 1 Механическое движение. Тело отсчета. Относительность движения. . . . КГУ «средняя школа имени М.В.Ломоносова». . . Дата: .10.2013. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.