- Элементарные частицы

Презентация "Элементарные частицы" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "Элементарные частицы" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

Элементарные частицы
Слайд 1

Элементарные частицы

Что относится к элементарным частицам? Частицы, из которых состоят атомы различных веществ- электрон, протон и нейтрон, - назвали элементарными. Слово «элементарный» подразумевало, что эти частицы являются первичными, простейшими, далее неделимыми и неизменяемыми.
Слайд 2

Что относится к элементарным частицам?

Частицы, из которых состоят атомы различных веществ- электрон, протон и нейтрон, - назвали элементарными. Слово «элементарный» подразумевало, что эти частицы являются первичными, простейшими, далее неделимыми и неизменяемыми.

Как обнаружить элементарную частицу? Обычно изучают и анализируют следы (траектории или треки), оставленные частицами.
Слайд 3

Как обнаружить элементарную частицу?

Обычно изучают и анализируют следы (траектории или треки), оставленные частицами.

История открытия элементарных частиц
Слайд 4

История открытия элементарных частиц

Открытие электрона. На основании опытов по электролизу М. Фарадей установил: заряды имеются в атомах всех химических элементов.
Слайд 5

Открытие электрона

На основании опытов по электролизу М. Фарадей установил: заряды имеются в атомах всех химических элементов.

В 1899 г. Дж. Томсон доказал реальность существования электронов.
Слайд 6

В 1899 г. Дж. Томсон доказал реальность существования электронов.

В 1909 г. Р. Милликен впервые измерил заряд электрона: q e = 1,602·10-19 Кл
Слайд 7

В 1909 г. Р. Милликен впервые измерил заряд электрона: q e = 1,602·10-19 Кл

Открытие протона. В 1919 г. Э. Резерфорд при бомбардировке азота альфа-частицами обнаружил протон: 147N + 42He → → 178O + 11 p
Слайд 8

Открытие протона

В 1919 г. Э. Резерфорд при бомбардировке азота альфа-частицами обнаружил протон: 147N + 42He → → 178O + 11 p

Открытие нейтрона. В 1932 г. Д. Чедвик открыл новую частицу и назвал ее нейтроном, которая не имеет электрического заряда. В свободном состоянии нейтрон живет около 1000 с, потом распадается на протон, электрон и нейтрино: n → p + 0-1e + ν
Слайд 9

Открытие нейтрона

В 1932 г. Д. Чедвик открыл новую частицу и назвал ее нейтроном, которая не имеет электрического заряда. В свободном состоянии нейтрон живет около 1000 с, потом распадается на протон, электрон и нейтрино: n → p + 0-1e + ν

Опыты Резерфорда и явление радиоактивности показали, что атомы не являются простейшими неделимыми частицами. Было установлено, что атомы состоят из электронов, протонов и нейтронов, которые считались неспособными ни к каким изменениям и превращениям, т. е. элементарными или простейшими.
Слайд 10

Опыты Резерфорда и явление радиоактивности показали, что атомы не являются простейшими неделимыми частицами. Было установлено, что атомы состоят из электронов, протонов и нейтронов, которые считались неспособными ни к каким изменениям и превращениям, т. е. элементарными или простейшими.

Но вскоре выяснилось, что эти частицы вовсе не являются неизменными…
Слайд 11

Но вскоре выяснилось, что эти частицы вовсе не являются неизменными…

Открытие позитрона. В 1928 г. П. Дирак предсказал, а в 1932 г. Г. Андерсон открыл позитрон (е+ ), фотографируя следы космических частиц в камере Вильсона.
Слайд 12

Открытие позитрона

В 1928 г. П. Дирак предсказал, а в 1932 г. Г. Андерсон открыл позитрон (е+ ), фотографируя следы космических частиц в камере Вильсона.

Открытие других элементарных частиц. В 1931 г. В.Паули предсказал, а в 1955 г. экспериментально зарегистрировал нейтрино и антинейтрино. В 1955 г. был открыт антипротон, а в 1959 г. – антинейтрон. В 1947 г. Х. Юкатава открыл π- мезон.
Слайд 13

Открытие других элементарных частиц

В 1931 г. В.Паули предсказал, а в 1955 г. экспериментально зарегистрировал нейтрино и антинейтрино. В 1955 г. был открыт антипротон, а в 1959 г. – антинейтрон. В 1947 г. Х. Юкатава открыл π- мезон.

Дальнейшие исследования частиц показали, что их нельзя считать элементарными. Каждая из этих частиц при взаимодействии с другими частицами и атомными ядрами может превращаться в другие частицы. Поэтому термин «элементарная частица» является условным. Сегодня обнаружено около 400 элементарных частиц.
Слайд 14

Дальнейшие исследования частиц показали, что их нельзя считать элементарными. Каждая из этих частиц при взаимодействии с другими частицами и атомными ядрами может превращаться в другие частицы. Поэтому термин «элементарная частица» является условным. Сегодня обнаружено около 400 элементарных частиц.

Гравитационное – взаимодействие между всеми частицами (гравитоны).
Слайд 16

Гравитационное – взаимодействие между всеми частицами (гравитоны).

Большой линейчатый ускоритель
Слайд 17

Большой линейчатый ускоритель

Линейный ускоритель
Слайд 18

Линейный ускоритель

Ускоритель элементарных частиц
Слайд 19

Ускоритель элементарных частиц

Элементарные частицы могут путешествовать во времени. Исследования при помощи уникального прибора – Большого адронного коллайдера – позволят ученым отправлять элементарные частицы в прошлое. Это следует из теории, которую в ближайшее время планируют проверить на этом крупнейшем в мире ускорителе, на
Слайд 20

Элементарные частицы могут путешествовать во времени

Исследования при помощи уникального прибора – Большого адронного коллайдера – позволят ученым отправлять элементарные частицы в прошлое. Это следует из теории, которую в ближайшее время планируют проверить на этом крупнейшем в мире ускорителе, находящемся на территории Женевы.

Адронный коллайдер
Слайд 21

Адронный коллайдер

Физикам впервые удалось в течение относительно длительного времени удерживать атомы антивещества в специальной ловушке. Антиматерия - это "двойник" обычной материи с той разницей, что все частицы антивещества имеют противоположный знак заряда. При взаимодействии частиц вещества и антивещес
Слайд 22

Физикам впервые удалось в течение относительно длительного времени удерживать атомы антивещества в специальной ловушке. Антиматерия - это "двойник" обычной материи с той разницей, что все частицы антивещества имеют противоположный знак заряда. При взаимодействии частиц вещества и антивещества происходит их взаимное уничтожение.

Американские физики, работающие с ускорителем частиц "Теватрон" в Национальной лаборатории им. Энрико Ферми, готовы объявить о сенсационном открытии. Возможно, им удалось обнаружить новую элементарную частицу или даже новый вид физического взаимодействия
Слайд 23

Американские физики, работающие с ускорителем частиц "Теватрон" в Национальной лаборатории им. Энрико Ферми, готовы объявить о сенсационном открытии. Возможно, им удалось обнаружить новую элементарную частицу или даже новый вид физического взаимодействия

Список похожих презентаций

Элементарные частицы. Античастицы

Элементарные частицы. Античастицы

§114-115. Элементарные частицы. Античастицы. План урока 1. Презентация «Элементарные частицы». 2. Новый материал. 3. Закрепление знаний. 4. Л.Р. . ...
Элементарные частицы атома

Элементарные частицы атома

Этап второй. От позитрона до кварков: 1932—1964 гг. Ни одна из частиц не бессмертна. Большинство частиц, называемых сейчас элементарными, не может ...
Элементарные частицы-наблюдение и регистрация

Элементарные частицы-наблюдение и регистрация

Природа неистощима в своих выдумках. И. Ньютон. И это чудо, что, несмотря на поразительную сложность мира, мы можем обнаруживать в его явлениях определённую ...
Элементарные частицы

Элементарные частицы

Сохранения обобщенных зарядов: Z, L, B, S. Полный электрический заряд. γ + Ze  e+ + e- + Ze ; Z= +1 - 1 + Z. Полный лептонный заряд. 0 = 0 + 1 + ...
Элементарные частицы

Элементарные частицы

Цель:. Ознакомление с физикой элементарных частиц и систематизация знаний по теме. Развитие абстрактного, экологического и научного мышления учащихся ...
Фундаментальные элементарные частицы

Фундаментальные элементарные частицы

Тест. 1.Какие физические системы образуются из элементарных частиц в результате электромагнитного взаимодействия? А. Электроны, протоны. Б. Ядра атомов. ...
Решение задач на движение частицы в магнитном поле.

Решение задач на движение частицы в магнитном поле.

1. Действует ли сила Лоренца:. на незаряженную частицу в магнитном поле; на заряженную частицу, покоящуюся в магнитном поле; на заряженную частицу, ...
Ядерные частицы

Ядерные частицы

1.Введение. Будем рассматривать частицы и  - кванты с энергиями Е >> J =13.5 Z эВ. (J – средний потенциал ионизации атома; E. 2. Прохождение тяжелых ...
Движение частицы

Движение частицы

Тема 5. ДВИЖЕНИЕ ЧАСТИЦЫ В ОДНОМЕРНОЙ ПОТЕНЦИАЛЬНОЙ ЯМЕ. 5.1. Движение свободной частицы. 5.2. Частица в одномерной прямоугольной яме с бесконечными ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Квантовая физика

Квантовая физика

П Л А Н 1. СТО А. Эйнштейна. 2. Тепловое излучение. 3. Фотоэффект. 4. Люминесценция. 5. Химическое действие света. 6. Световое давление. 7. Физический ...
Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
«Давление твёрдых тел» физика

«Давление твёрдых тел» физика

Физический диктант. Обозначение площади – Единица площади – Площадь прямоугольника – Обозначение силы – Единица силы – Формула силы тяжести – Обозначение ...
Капиллярные явления физика

Капиллярные явления физика

Ищем:. Капиллярные явления Модель капиллярного вечного двигателя Объяснение невозможности создания такого двигателя. Капиллярные явления. Заключаются ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...

Конспекты

Сила Лоренца. Движение заряженной частицы в магнитных полях

Сила Лоренца. Движение заряженной частицы в магнитных полях

Урок по физике в 10 классе по теме " Сила Лоренца. Движение заряженной частицы в магнитных полях». . Цель урока. :  изучение действия магнитного ...
Действие магнитного поля на движущиеся заряженные частицы

Действие магнитного поля на движущиеся заряженные частицы

План-конспект урока. в 11 классе. по теме « Действие магнитного поля на движущиеся заряженные частицы». тип урока. : комбинированный. методы:. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:10 октября 2018
Категория:Физика
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации