- Оптические системы

Презентация "Оптические системы" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30

Презентацию на тему "Оптические системы" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 30 слайд(ов).

Слайды презентации

Основные характеристики оптических систем
Слайд 1

Основные характеристики оптических систем

Оптическая система. Оптическая система – совокупность оптических сред, разделенных оптическими поверхностями, и содержащая диафрагмы Оптическая система предназначена для формирования изображения посредством перераспределения электромагнитного поля, исходящего от предмета
Слайд 2

Оптическая система

Оптическая система – совокупность оптических сред, разделенных оптическими поверхностями, и содержащая диафрагмы Оптическая система предназначена для формирования изображения посредством перераспределения электромагнитного поля, исходящего от предмета

Оптический прибор
Слайд 3

Оптический прибор

Характеристики оптических систем. Присоединительные характеристики Характеристики предмета и изображения Зрачковые характеристики Спектральные характеристики
Слайд 4

Характеристики оптических систем

Присоединительные характеристики Характеристики предмета и изображения Зрачковые характеристики Спектральные характеристики

Характеристики предмета и изображения. Предмет – это совокупность точек, из которых выходят лучи, попадающие в оптическую систему Ближний тип – предмет или изображение расположены на конечном расстоянии Дальний тип – предмет или изображение расположены в бесконечности
Слайд 5

Характеристики предмета и изображения

Предмет – это совокупность точек, из которых выходят лучи, попадающие в оптическую систему Ближний тип – предмет или изображение расположены на конечном расстоянии Дальний тип – предмет или изображение расположены в бесконечности

Близкий предмет и изображение. y x - S, [мм] предмет изображение
Слайд 6

Близкий предмет и изображение

y x - S, [мм] предмет изображение

Удаленный предмет и изображение. y - S, [дптр]
Слайд 7

Удаленный предмет и изображение

y - S, [дптр]

Обобщенные характеристики предмета и изображения. Обобщенные размеры поля предмета и изображения (2y0 max, 2y0 max) – это удвоенные максимальные размеры предмета и изображения Передний и задний отрезки (S, S ) – указывают положение предмета (изображения) по отношению к оптической системе
Слайд 8

Обобщенные характеристики предмета и изображения

Обобщенные размеры поля предмета и изображения (2y0 max, 2y0 max) – это удвоенные максимальные размеры предмета и изображения Передний и задний отрезки (S, S ) – указывают положение предмета (изображения) по отношению к оптической системе

Типы оптических систем. Телескопическая система: дальний предмет дальнее изображение Фотографический объектив: дальний предмет ближнее изображение Микроскоп: ближний предмет дальнее изображение Репродукционная система: ближний предмет ближнее изображение
Слайд 9

Типы оптических систем

Телескопическая система: дальний предмет дальнее изображение Фотографический объектив: дальний предмет ближнее изображение Микроскоп: ближний предмет дальнее изображение Репродукционная система: ближний предмет ближнее изображение

Зрачковые характеристики. Апертурная диафрагма – это диафрагма, которая ограничивает размер осевого пучка, то есть пучка, идущего из осевой точки предмета
Слайд 10

Зрачковые характеристики

Апертурная диафрагма – это диафрагма, которая ограничивает размер осевого пучка, то есть пучка, идущего из осевой точки предмета

Входной и выходной зрачок. Входной зрачок оптической системы – это изображение апертурной диафрагмы в пространстве предметов, сформированное предшествующей частью оптической системы в обратном ходе лучей
Слайд 11

Входной и выходной зрачок

Входной зрачок оптической системы – это изображение апертурной диафрагмы в пространстве предметов, сформированное предшествующей частью оптической системы в обратном ходе лучей

Выходной зрачок – это изображение апертурной диафрагмы в пространстве изображений, сформированное последующей частью оптической системы в прямом ходе лучей
Слайд 12

Выходной зрачок – это изображение апертурной диафрагмы в пространстве изображений, сформированное последующей частью оптической системы в прямом ходе лучей

Апертура. Передняя (задняя) апертура – это размер входного (выходного) зрачка Числовая апертура – это произведение размера зрачка на показатель преломления. близкий предмет: близкое изображение: удаленный предмет: удаленное изображение:
Слайд 13

Апертура

Передняя (задняя) апертура – это размер входного (выходного) зрачка Числовая апертура – это произведение размера зрачка на показатель преломления

близкий предмет: близкое изображение:

удаленный предмет: удаленное изображение:

Положение зрачков. Для удаленного предмета или изображения: положение зрачка (Sp или Sp) измеряется относительно оптической системы в обратных миллиметрах, то есть в килодиоптриях Для близкого предмета или изображения: положение зрачка (Sp или Sp) измеряется в миллиметрах от предмета (изображения)
Слайд 14

Положение зрачков

Для удаленного предмета или изображения: положение зрачка (Sp или Sp) измеряется относительно оптической системы в обратных миллиметрах, то есть в килодиоптриях Для близкого предмета или изображения: положение зрачка (Sp или Sp) измеряется в миллиметрах от предмета (изображения)

Спектральные характеристики. н, в – нижняя и верхняя границы спектрального интервала 0 – центральная (основная) длина волны Функция относительного спектрального пропускания () показывает, какое количество света пропускает оптическая система по отношению к падающему свету
Слайд 15

Спектральные характеристики

н, в – нижняя и верхняя границы спектрального интервала 0 – центральная (основная) длина волны Функция относительного спектрального пропускания () показывает, какое количество света пропускает оптическая система по отношению к падающему свету

Воздействие оптической системы: преобразование расходящегося пучка лучей, исходящего от предмета, в сходящиеся пучки (изменение масштаба) ограничение размеров пучка лучей и ослабление интенсивности света (передача энергии) искажение структуры предмета вследствие нарушения формы пучка лучей (передача
Слайд 16

Воздействие оптической системы: преобразование расходящегося пучка лучей, исходящего от предмета, в сходящиеся пучки (изменение масштаба) ограничение размеров пучка лучей и ослабление интенсивности света (передача энергии) искажение структуры предмета вследствие нарушения формы пучка лучей (передача структуры) Передаточные характеристики: масштабные передаточные характеристики энергетические передаточные характеристики структурные передаточные характеристики

Масштабные передаточные характеристики. Обобщенное увеличение – это отношение величины изображения к величине предмета: обобщенное увеличение также связывает между собой входные и выходные апертуры: Видимое увеличение – это отношение тангенса угла, под которым предмет наблюдается через оптическую си
Слайд 17

Масштабные передаточные характеристики

Обобщенное увеличение – это отношение величины изображения к величине предмета:

обобщенное увеличение также связывает между собой входные и выходные апертуры:

Видимое увеличение – это отношение тангенса угла, под которым предмет наблюдается через оптическую систему, к тангенсу угла, под которым предмет наблюдается невооруженным глазом

Обобщенное увеличение
Слайд 18

Обобщенное увеличение

Дисторсия. Дисторсия – увеличение в различных точках поля не одинаковое. Пример
Слайд 19

Дисторсия

Дисторсия – увеличение в различных точках поля не одинаковое

Пример

Энергетические передаточные характеристики. Светосила H характеризует способность прибора давать более или менее яркие изображения: где E – освещенность предмета, E – освещенность изображения. Функция светораспределения по полю Ф характеризует равномерность изображения: где H0 – светосила в центре
Слайд 20

Энергетические передаточные характеристики

Светосила H характеризует способность прибора давать более или менее яркие изображения: где E – освещенность предмета, E – освещенность изображения

Функция светораспределения по полю Ф характеризует равномерность изображения: где H0 – светосила в центре поля, H – светосила на краю поля

Структурные передаточные характеристики. Функция рассеяния точки (ФРТ) описывает распределение интенсивности в изображении светящейся точки. Изображение светящейся точки называют пятном рассеяния
Слайд 21

Структурные передаточные характеристики

Функция рассеяния точки (ФРТ) описывает распределение интенсивности в изображении светящейся точки. Изображение светящейся точки называют пятном рассеяния

Разрешающая способность. Разрешающая способность оптической системы – это способность изображать раздельно два близко расположенных точечных предмета
Слайд 22

Разрешающая способность

Разрешающая способность оптической системы – это способность изображать раздельно два близко расположенных точечных предмета

Разрешающая способность по Рэлею. Предел разрешения – минимальное расстояние, при котором два близко расположенных точечных предмета будут изображаться как раздельные
Слайд 23

Разрешающая способность по Рэлею

Предел разрешения – минимальное расстояние, при котором два близко расположенных точечных предмета будут изображаться как раздельные

Разрешающая способность по Фуко. Разрешающая способность определяется как максимальная пространственная частота периодического тест-объекта, в изображении которого еще различимы штрихи Пространственная частота измеряется: для удаленного изображения [лин/рад] для близкого изображения [лин/мм]
Слайд 24

Разрешающая способность по Фуко

Разрешающая способность определяется как максимальная пространственная частота периодического тест-объекта, в изображении которого еще различимы штрихи Пространственная частота измеряется: для удаленного изображения [лин/рад] для близкого изображения [лин/мм]

Частотно-контрастная характеристика
Слайд 25

Частотно-контрастная характеристика

Аберрации. Аберрация – это отклонение хода реального луча от идеального. Аберрации приводят к ухудшению качества изображения если аберрации малы и преобладает дифракция, то такие системы называются дифракционно-ограниченными если аберрации велики, и дифракция теряется на фоне аберраций, то такие сис
Слайд 26

Аберрации

Аберрация – это отклонение хода реального луча от идеального. Аберрации приводят к ухудшению качества изображения если аберрации малы и преобладает дифракция, то такие системы называются дифракционно-ограниченными если аберрации велики, и дифракция теряется на фоне аберраций, то такие системы называются геометрически-ограниченными

Волновая аберрация. Волновая аберрация – это отклонение выходящего волнового фронта от идеального, измеренное вдоль данного луча в количестве длин волн:
Слайд 27

Волновая аберрация

Волновая аберрация – это отклонение выходящего волнового фронта от идеального, измеренное вдоль данного луча в количестве длин волн:

Поперечные аберрации. Поперечные аберрации x, y – это отклонения координат точки пересечения реального луча с плоскостью изображения от координат точки идеального изображения: для изображения ближнего типа – [мм] для изображения дальнего типа – [рад]
Слайд 28

Поперечные аберрации

Поперечные аберрации x, y – это отклонения координат точки пересечения реального луча с плоскостью изображения от координат точки идеального изображения: для изображения ближнего типа – [мм] для изображения дальнего типа – [рад]

Продольная аберрация. Продольная аберрация S – это отклонение координаты точки пересечения реального луча с осью от координаты точки идеального изображения вдоль оси: для изображения ближнего типа – [мм] для изображения дальнего типа – [мм–1]
Слайд 29

Продольная аберрация

Продольная аберрация S – это отклонение координаты точки пересечения реального луча с осью от координаты точки идеального изображения вдоль оси: для изображения ближнего типа – [мм] для изображения дальнего типа – [мм–1]

Хроматические аберрации. Монохроматические аберрации не зависят от длины волны Хроматические аберрации – это проявление зависимости характеристик оптической системы от длины волны света: хроматизм положения – это аберрация, при которой изображения одной точки предмета расположены на разном расстояни
Слайд 30

Хроматические аберрации

Монохроматические аберрации не зависят от длины волны Хроматические аберрации – это проявление зависимости характеристик оптической системы от длины волны света: хроматизм положения – это аберрация, при которой изображения одной точки предмета расположены на разном расстоянии от оптической системы для разных длин волн хроматизм увеличения – это аберрация, при которой увеличение оптической системы зависит от длины волны

Список похожих презентаций

Строение Солнечной системы

Строение Солнечной системы

Цели работы. Познакомиться с основами представлений о происхождении Солнечной системы; выявить особенности планет земной группы, планет-гигантов и ...
Законы Ньютона. Инерциальные системы отсчёта

Законы Ньютона. Инерциальные системы отсчёта

Суть законов инерции впервые была изложена в одной из книг итальянского ученого Галилео Галилея, опубликованная в начале 17 века. До этого на протяжении ...
Понятие об энергии мех. системы

Понятие об энергии мех. системы

МЕХАНИЧЕСКАЯ РАБОТА. Изменение мех. дв. и эн. тела происходит в процессе силового вз-вия этого тела с другими телами. Для колич. хар-ки процесса обмена ...
Реактивные системы

Реактивные системы

Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а затем завоюет себе ...
Оптические явления в атмосфере

Оптические явления в атмосфере

Рассеяние света -Солнечный закат -Цвет неба Рефракция - Сплюснутость солнечного диска -Зелёный луч -Слепая полоса -Миражи Радуга Гало. Шкала электромагнитных ...
Оптические явления в природе

Оптические явления в природе

Радуга. Радуга – не что иное, как спектр солнечного света. Он образован разложени-ем белого света в каплях дождя как призмах. Из дождевых капель под ...
Оптические иллюзии или обман зрения

Оптические иллюзии или обман зрения

Это ошибки в зрительном восприятии, вызванные неточностью или неадекватностью процессов неосознаваемой коррекции зрительного образа (неверная оценка ...
Оптические явления

Оптические явления

Цвет неба. Земная атмосфера неоднородна, в ней находится множество мелких различных частиц, по-разному отражающих и рассеивающих солнечный свет. На ...
Неинерциальные системы отсчета

Неинерциальные системы отсчета

Принцип относительности. Галилео Галилей (1564-1642). Законами Ньютона можно пользоваться только в инерциальных системах отсчета. Галилео Галилей, ...
Оптические иллюзии

Оптические иллюзии

Оптические иллюзии — ошибки в зрительном восприятии, неверная оценка длины отрезков, величины углов или цвета изображенного объекта. Причины таких ...
Международные системы мер длины: история и современность

Международные системы мер длины: история и современность

"Наука начинается с тех пор, как начинают измерять: точная наука немыслима без меры" Д.И. Менделеев. Человек столкнулся с необходимостью измерений ...
Линза. Оптические приборы

Линза. Оптические приборы

Этот рисунок взят из старинного манускрипта. На нём изображена камера – обскура, с помощью которой в 1544 г. наблюдалось солнечное затмение. камера ...
Колебательное движение. Колебательные системы

Колебательное движение. Колебательные системы

Колебательное движение. Колебательные системы. Колебания – это движения , которые точно или приблизительно повторяются через определённые интервалы ...
Оптические свойства линз

Оптические свойства линз

Вопросы для повторения. Какие характеристики сферической линзы Вы знаете? (устно) Сформулируйте уравнение Гаусса и величины, в него входящие. (устно) ...
Оптические линзы

Оптические линзы

Фронтальный опрос - Какое явление называется преломлением света? В чем его суть? - Какие наблюдения и опыты наводят на мысль об изменении направления ...
Оптические явления

Оптические явления

Мираж в пустыне. Нижний мираж (перевёрнутое изображение предметов) появляется в жаркий день. Слои воздуха около поверхности земли нагреваются больше ...
Оптические приборы

Оптические приборы

Как прекрасен этот мир, посмотри! Оптические приборы. Линзы. Тест «Оптика». 1.Правильность какого закона подтверждает появление тени? А. Закон преломления ...
Оптические явления в атмосфере

Оптические явления в атмосфере

ЦЕЛИ УРОКА. Продолжить формирование у учащихся представлений и знаний об атмосфере; Познакомить учащихся с оптическими явлениями в атмосфере – радугой, ...
Оптические приборы

Оптические приборы

Цели. Образовательная: познакомить учащихся с устройством и принципом действия оптических приборов. Развивающая: развивать познавательный интерес, ...
Оптические явления в природе

Оптические явления в природе

Оптические явления в атмосфере. Многообразие оптических явлений в атмосфере обусловлено различными причинами. К наиболее распространенным феноменам ...

Конспекты

Оптические явления в природе

Оптические явления в природе

Урок в 9 кл. по теме «. Оптические явления в природе». Цели урока:. . Показать внутреннюю связь между поэтическим восприятием природы и её ...
Первый закон Ньютона. Инерциальные системы отсчёта

Первый закон Ньютона. Инерциальные системы отсчёта

План урока №_______. Тема :. Первый закон Ньютона. Инерциальные системы отсчёта. Цели урока:. Сформировать понятие об инерциальной системе ...
Оптические явления

Оптические явления

Муниципальное образовательное учреждение «Гимназия». г. Александровск Пермский край. Конспект урока по физике в 8 классе. «Оптические ...
Определение расстояний до тел Солнечной системы и их размеров

Определение расстояний до тел Солнечной системы и их размеров

Интегрированный урок (. физика + математика. ) в 12 классе. II. вида. Тема: «Определение расстояний до тел Солнечной системы и их размеров. ». ...
Линзы. Оптические приборы

Линзы. Оптические приборы

Тема урока «Линзы. Оптические приборы». 11 класс. . Тип урока. : закрепления и совершенствования знаний. Цель урока. : обобщить знания учащихся ...
Линзы. Оптические приборы

Линзы. Оптические приборы

Урок в 11-м классе по теме "Линзы. Оптические приборы". Цели урока:. Образовательные. :. обеспечить в ходе урока усвоение нового материала;. ...
Инерциальные системы отсчёта. Первый закон Ньютона

Инерциальные системы отсчёта. Первый закон Ньютона

Урок "Инерциальные системы отсчёта. Первый закон Ньютона". Задачи:. Образовательные:. Сформулировать понятие об инерциальной системе отсчёта, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.