Презентация "Фізика754" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "Фізика754" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

Звук. Джерела і приймачі звуку. Характеристики звуку. Поширення звуку в різних середовищах. Відбивання звуку. Сприймання звуку людиною. Інфразвук та ультразвук. Вплив звуків на живі організми.
Слайд 1

Звук. Джерела і приймачі звуку. Характеристики звуку. Поширення звуку в різних середовищах. Відбивання звуку. Сприймання звуку людиною. Інфразвук та ультразвук. Вплив звуків на живі організми.

Заплющте очі і уявіть, що ви сидите в концертному залі і слухаєте музику знаменитого композитора. Музичні тони, їхні переливи викликають у людини істинну насолоду.
Слайд 2

Заплющте очі і уявіть, що ви сидите в концертному залі і слухаєте музику знаменитого композитора. Музичні тони, їхні переливи викликають у людини істинну насолоду.

Немає, напевне, на Землі людини, яка б не любила музику. Музика супроводжує людини протягом усього життя: весела і сумна, ритмічна і повільна.
Слайд 3

Немає, напевне, на Землі людини, яка б не любила музику. Музика супроводжує людини протягом усього життя: весела і сумна, ритмічна і повільна.

А хто любить відпочивати восени на лоні природи? Пригадайте, які звуки ви там чули: шелест листя, спів пташок, свист вітру…
Слайд 4

А хто любить відпочивати восени на лоні природи? Пригадайте, які звуки ви там чули: шелест листя, спів пташок, свист вітру…

Що ж таке звук? Якщо струну бандури натягнути, а потім відпустити, вона почне коливатися рухатися, як гойдалка чи маятник годинника. А оскільки це коливання відбувається у повітрі, то струна змушує коливатися і повітря, розташоване поруч з нею.
Слайд 5

Що ж таке звук? Якщо струну бандури натягнути, а потім відпустити, вона почне коливатися рухатися, як гойдалка чи маятник годинника. А оскільки це коливання відбувається у повітрі, то струна змушує коливатися і повітря, розташоване поруч з нею.

Отже, струна передає власні коливання частинкам повітря, розташованим до неї найближче, а ті – сусіднім і так далі. Внаслідок цього і виникає звук. Звук – це коливання фізичних тіл (наприклад, повітря, води, металу), що поширюються від джерела коливань та сприймаються вухом людини та тварин.
Слайд 6

Отже, струна передає власні коливання частинкам повітря, розташованим до неї найближче, а ті – сусіднім і так далі. Внаслідок цього і виникає звук. Звук – це коливання фізичних тіл (наприклад, повітря, води, металу), що поширюються від джерела коливань та сприймаються вухом людини та тварин.

Звукові хвилі поширюються у навколишньому середовищі з певною швидкістю. Тобто на поширення звукових коливань від джерела потрібен певний час.
Слайд 7

Звукові хвилі поширюються у навколишньому середовищі з певною швидкістю. Тобто на поширення звукових коливань від джерела потрібен певний час.

Наприклад, під час грози можна помітити, що спершу видно спалах блискавки, а лише потім чуємо удари грому. Якщо гроза далеко, то запізнення грому досягає кількох секунд. Спочатку видно спалах, а через певний час чути й звук.
Слайд 8

Наприклад, під час грози можна помітити, що спершу видно спалах блискавки, а лише потім чуємо удари грому. Якщо гроза далеко, то запізнення грому досягає кількох секунд. Спочатку видно спалах, а через певний час чути й звук.

За допомогою дослідів було виявлено, що в повітря швидкість звуку становить 340 м/с. У воді цей показник становить приблизно 1500 м/с.
Слайд 9

За допомогою дослідів було виявлено, що в повітря швидкість звуку становить 340 м/с. У воді цей показник становить приблизно 1500 м/с.

У твердих тілах швидкість звуку ще більша, ніж у рідинах. У деяких металах швидкість сягає кількох тисяч метрів за секунду: зокрема, у свинці – 1300 м/с, у міді – 4560 м/с, у сталі – 5100 м/с. Цікаво, що крізь гуму звук проходить зі швидкість лише 54 м/с, крізь корок – 500 м/с, цегляну стіну – 3480
Слайд 10

У твердих тілах швидкість звуку ще більша, ніж у рідинах. У деяких металах швидкість сягає кількох тисяч метрів за секунду: зокрема, у свинці – 1300 м/с, у міді – 4560 м/с, у сталі – 5100 м/с. Цікаво, що крізь гуму звук проходить зі швидкість лише 54 м/с, крізь корок – 500 м/с, цегляну стіну – 3480 м/с, граніт – 3950 м/с, дерево – 4000 м/с, а скло - 5000 м/с.

Очевидно, звук не може поширюватися за відсутності речовини.
Слайд 11

Очевидно, звук не може поширюватися за відсутності речовини.

Якби ми потрапили на Місяць, то нічого б не почули, бо на ньому немає повітря – середовища, в якому поширюється звук. Тому космонавт на Місяці, де немає атмосфери, не почує ні потужного гулу реактивних двигунів, ні виверження вулкана. Перебуваючи на Місяці, космонавти спілкувалися один з одним за до
Слайд 12

Якби ми потрапили на Місяць, то нічого б не почули, бо на ньому немає повітря – середовища, в якому поширюється звук. Тому космонавт на Місяці, де немає атмосфери, не почує ні потужного гулу реактивних двигунів, ні виверження вулкана. Перебуваючи на Місяці, космонавти спілкувалися один з одним за допомогою радіо.

Як виникає луна (відлуння)? Явище полягає в тому, що звук від джерела, дійшовши до якої-небудь перешкоди, відбивається від неї і повертається до місця, де він виник. Отже, луна є відбитою від перешкоди звуковою хвилею.
Слайд 13

Як виникає луна (відлуння)? Явище полягає в тому, що звук від джерела, дійшовши до якої-небудь перешкоди, відбивається від неї і повертається до місця, де він виник. Отже, луна є відбитою від перешкоди звуковою хвилею.

Ми сприймаємо звуки у 5 разів гірше, ніж кішка, і в 10 – ніж дельфін. Тобто слух у людини не найкращий серед представників живої природи. Чому ж не усі звукові коливання чує людина? Виявляється тіла можуть мати різну частоту коливань.
Слайд 14

Ми сприймаємо звуки у 5 разів гірше, ніж кішка, і в 10 – ніж дельфін. Тобто слух у людини не найкращий серед представників живої природи. Чому ж не усі звукові коливання чує людина? Виявляється тіла можуть мати різну частоту коливань.

Людське вухо сприймає далеко не усі коливання. Ми чуємо лише звуки, які створюють тіла, що здійснюють від 16 до 20 000 коливань за секунду (16 Гц – 20 000 Гц). Такі коливання називають акустичними (з грецької akustikos – слуховий). Розділ фізики, який вивчає такі звуки, називають акустикою.
Слайд 15

Людське вухо сприймає далеко не усі коливання. Ми чуємо лише звуки, які створюють тіла, що здійснюють від 16 до 20 000 коливань за секунду (16 Гц – 20 000 Гц). Такі коливання називають акустичними (з грецької akustikos – слуховий). Розділ фізики, який вивчає такі звуки, називають акустикою.

Якщо тіло здійснює менш як 16 коливань за одну секунду (16 Гц), то такі коливання називаються інфразвуком (з лат. infra – нижче, під). Він шкідливо впливає на організм людини. Інфразвук виникає під час морських штормів, ударів грози, виверження вулканів, землетрусах, підземних та підводних вибухах,
Слайд 16

Якщо тіло здійснює менш як 16 коливань за одну секунду (16 Гц), то такі коливання називаються інфразвуком (з лат. infra – нижче, під). Він шкідливо впливає на організм людини. Інфразвук виникає під час морських штормів, ударів грози, виверження вулканів, землетрусах, підземних та підводних вибухах, від хвиль цунамі.

Також інфразвукові хвилі виникають під час вібрацій масивних верстатів, компресорів та іншого устаткування. Це джерело може бути особливо небезпечним для робітників, тому що вплив інфразвукових хвиль – хоч їх і не чути – може призвести до шкідливих наслідків для людського організму.
Слайд 17

Також інфразвукові хвилі виникають під час вібрацій масивних верстатів, компресорів та іншого устаткування. Це джерело може бути особливо небезпечним для робітників, тому що вплив інфразвукових хвиль – хоч їх і не чути – може призвести до шкідливих наслідків для людського організму.

Якщо тіло здійснює понад 20 000 коливань за одну секунду (20 000 Гц), то такі коливання називаються ультразвуком (від лат. ultra – за межами, зверх). Ультразвук міститься у шумі вітру та моря, присутній у шумі машин.
Слайд 18

Якщо тіло здійснює понад 20 000 коливань за одну секунду (20 000 Гц), то такі коливання називаються ультразвуком (від лат. ultra – за межами, зверх). Ультразвук міститься у шумі вітру та моря, присутній у шумі машин.

Багато тварин сприймають ультразвукові частоти. Наприклад, шимпанзе можуть чути звуки до 33 000 Гц, кури – до 38 000 Гц, коники – до 90 000 Гц, собаки – 50 000 - 100 000Гц, а кажани – 100 000 -175 000 Гц.
Слайд 19

Багато тварин сприймають ультразвукові частоти. Наприклад, шимпанзе можуть чути звуки до 33 000 Гц, кури – до 38 000 Гц, коники – до 90 000 Гц, собаки – 50 000 - 100 000Гц, а кажани – 100 000 -175 000 Гц.

Ультразвуки спричиняють також параліч і загибель холоднокровних тварин – риб, жаб тощо.
Слайд 20

Ультразвуки спричиняють також параліч і загибель холоднокровних тварин – риб, жаб тощо.

Ультразвукові хвилі мають безліч застосувань у медицині для діагностики та лікування органів людського організму, а також в інших галузях науки й техніки (навігація, підводний зв’язок, зварювання). Учені встановили, що найпростіші живі істоти швидко гинуть під дією ультразвуків. Цю властивість викор
Слайд 21

Ультразвукові хвилі мають безліч застосувань у медицині для діагностики та лікування органів людського організму, а також в інших галузях науки й техніки (навігація, підводний зв’язок, зварювання). Учені встановили, що найпростіші живі істоти швидко гинуть під дією ультразвуків. Цю властивість використовують для стерилізації води, молока та інших харчових продуктів.

Ми живемо у світі звуків: чуємо голоси людей, спів птахів, звуки музичних інструментів, шум двигунів автомобілів, шелест листя в лісі, грім під час грози, писк комара біля вуха, дзижчання мухи.
Слайд 22

Ми живемо у світі звуків: чуємо голоси людей, спів птахів, звуки музичних інструментів, шум двигунів автомобілів, шелест листя в лісі, грім під час грози, писк комара біля вуха, дзижчання мухи.

І цей чудовий світ ми не тільки бачимо, але й чуємо. І це прекрасно!
Слайд 23

І цей чудовий світ ми не тільки бачимо, але й чуємо. І це прекрасно!

Список похожих презентаций

Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Атомная физика

Атомная физика

План урока 1. Из истории физики 2. Модель Томсона 3. Опыт Резерфорда 4. Противоречия 5.Постулаты Бора 6.Энергетическая диаграмма атома водорода 7. ...
Лампы накаливания физика

Лампы накаливания физика

Актуальность. 2 июля 2009 года Президент России Дмитрий Медведев, выступая на заседании президума Госсовета по вопросам повышения энергоэффективности ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...
Атомная физика

Атомная физика

СТРОЕНИЕ АТОМА Модель Томсона. Модель Резерфорда. Опыт Резерфорда. Определение размеров. атомного ядра Планетарная модель атома. Планетарная модель ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:8 июня 2019
Категория:Физика
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации