- Двигательные органеллы клетки

Презентация "Двигательные органеллы клетки" (7 класс) по биологии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29

Презентацию на тему "Двигательные органеллы клетки" (7 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Биология. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 29 слайд(ов).

Слайды презентации

Срс. Карагандинский государственный медицинский университет. Подготовила: студентка 126 группы Жусупова Ф.Б. Проверила: преподаватель Татина Е.С. Кафедра молекулярной биологии и медицинской генетики. СРС. на тему: «Двигательные органеллы клетки». Караганда 2010 год
Слайд 1

Срс

Карагандинский государственный медицинский университет

Подготовила: студентка 126 группы Жусупова Ф.Б. Проверила: преподаватель Татина Е.С.

Кафедра молекулярной биологии и медицинской генетики

СРС

на тему: «Двигательные органеллы клетки»

Караганда 2010 год

Микротрубочки. Микротрубочки представляют собой полые внутри цилиндры диаметром 25 нм. Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерами тубулина. Микротрубочки, подобно актиновым микрофиламентам, полярны: на од
Слайд 2

Микротрубочки

Микротрубочки представляют собой полые внутри цилиндры диаметром 25 нм. Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерами тубулина. Микротрубочки, подобно актиновым микрофиламентам, полярны: на одном конце происходит самосборка микротрубочки, на другом — разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокинез и везикулярный транспорт.

В образовании микротрубочки выделяют три фазы: Замедленная фаза, или нуклеация. Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и
Слайд 3

В образовании микротрубочки выделяют три фазы:

Замедленная фаза, или нуклеация. Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и называется замедленной;

Фаза полимеризации, или элонгация. Если концентрация свободного тубулина высока, его полимеризация происходит быстрее, чем деполимеризация на минус-конце, за счет чего микротрубочка удлиняется. По мере её роста концентрация тубулина падает до критической и скорость роста замедляется вплоть до вступления в следующую фазу;

Фаза стабильного состояния. Деполимеризация уравновешивает полимеризацию, и рост микротрубочки останавливается.

Динамическая нестабильность
Слайд 4

Динамическая нестабильность

Функция. Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными. Это высокомолекулярные соединения, состоящие из двух тяжёл
Слайд 5

Функция

Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными. Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые — связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Строение Микротрубочки — это структуры, в которых 13 тубулиновых α-/β-гетеродимеров уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний — около 15. Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противопол
Слайд 6

Строение Микротрубочки — это структуры, в которых 13 тубулиновых α-/β-гетеродимеров уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний — около 15. Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца — минус-конца — тубулиновые единицы отщепляются.

Строение микротрубочки
Слайд 7

Строение микротрубочки

Центросома. ЦОМТ - центросомы, из которых растет митотическое веретено и "звезды" микротрубочек во многих клетках, а также базальные тельца, из которых растут микротрубочки жгутиков и ресничек. Замечательное свойство этих центров, что они способны репродуцироваться: новый центр вырастает р
Слайд 8

Центросома

ЦОМТ - центросомы, из которых растет митотическое веретено и "звезды" микротрубочек во многих клетках, а также базальные тельца, из которых растут микротрубочки жгутиков и ресничек. Замечательное свойство этих центров, что они способны репродуцироваться: новый центр вырастает рядом со старым и затем "материнский" и дочерний центры расходятся. Долго искали в центрах ДНК, но не нашли. Удвоение центров, видимо, имеет совсем особый механизм, отличный от удвоения ДНК, но природу его мы еще не знаем. Как уже говорилось, микротрубочки разных структур сильно различаются по стабильности

Структуры, образуемые системой микротрубочек и организующих их центров. А - параллельные микротрубочки ресничек, растущие от базальных телец к поверхности клетки. Б - микротрубочки митотического веретена, растущие навстречу друг другу от двух центров, расположенных на полюсах веретена. Некоторые из
Слайд 9

Структуры, образуемые системой микротрубочек и организующих их центров. А - параллельные микротрубочки ресничек, растущие от базальных телец к поверхности клетки. Б - микротрубочки митотического веретена, растущие навстречу друг другу от двух центров, расположенных на полюсах веретена. Некоторые из микротрубочек прикрепляются плюс-концами к особым участкам (кинетохорам) хромосом. На схеме две хромосомы в метафазе, то есть до начала расхождения к полюсам

Взаимодействия микротрубочек (цилиндры) с соответствующими моторными молекулами. Р - микротрубочки реснички. Молекулы динеина прикреплены хвостами (линии) и головками (черные кружки) к соседним микротрубочкам. Перемещение головок вызывает сгибание обеих микротрубочек. К, Д - движения органелл (больш
Слайд 10

Взаимодействия микротрубочек (цилиндры) с соответствующими моторными молекулами. Р - микротрубочки реснички. Молекулы динеина прикреплены хвостами (линии) и головками (черные кружки) к соседним микротрубочкам. Перемещение головок вызывает сгибание обеих микротрубочек. К, Д - движения органелл (большие круги) при помощи молекул кинезина (К) или динеина (Д) вдоль микротрубочки в противоположных направлениях.

Центросома (греч. soma — тело), центросфера, цетроплазма или клеточный центр — главный центр организации микротрубочек (ЦОМТ) и регулятор хода клеточного цикла в клетках эукариот. Впервые обнаружена в 1888 году Теодором Бовери, который назвал её «особым органом клеточного деления». Хотя центросома и
Слайд 11

Центросома (греч. soma — тело), центросфера, цетроплазма или клеточный центр — главный центр организации микротрубочек (ЦОМТ) и регулятор хода клеточного цикла в клетках эукариот. Впервые обнаружена в 1888 году Теодором Бовери, который назвал её «особым органом клеточного деления». Хотя центросома играет важнейшую роль в клеточном делении, недавно было показано, что она не является необходимой. В подавляющем большинстве случаев в клетке в норме присутствует только одна центросома. Аномальное увеличение числа центросом характерно для раковых клеток. Более одной центросомы в норме характерно для некоторых полиэнергидных простейших и для синцитиальных структур.

Двигательные органеллы клетки Слайд: 12
Слайд 12
Такой увидели центросому в 1887 г. ее первооткрыватели: Т.Бовери описал ее в полюсах митотического веретена (слева), а Э.ван Бенеден - в интерфазной клетке.
Слайд 13

Такой увидели центросому в 1887 г. ее первооткрыватели: Т.Бовери описал ее в полюсах митотического веретена (слева), а Э.ван Бенеден - в интерфазной клетке.

Наряду с центросомами, также в конце XIX в., были описаны органеллы, лежащие у основания специализированных клеточных образований - ресничек и жгутиков; эти органеллы получили название кинетосом, или базальных телец [2, 3]. Авторы, Л.Хеннеги и М.Легоссек, наблюдали взаимный переход базальных телец и
Слайд 14

Наряду с центросомами, также в конце XIX в., были описаны органеллы, лежащие у основания специализированных клеточных образований - ресничек и жгутиков; эти органеллы получили название кинетосом, или базальных телец [2, 3]. Авторы, Л.Хеннеги и М.Легоссек, наблюдали взаимный переход базальных телец и центросом и в 1898 г. выдвинули гипотезу о гомологии этих клеточных органелл, которая впоследствии получила экспериментальное подтверждение (рис.2).

Рис.2. Формирование полюсов веретена деления из базальных телец в сперматоцитах Bombyx mori [ах Bombyx mori [
Слайд 15

Рис.2. Формирование полюсов веретена деления из базальных телец в сперматоцитах Bombyx mori [ах Bombyx mori [

Рис. 3. Ультраструктура центросомы в интерфазной клетке млекопитающих на последовательных серийных срезах [19]. Процентриль. «пустой» просвет центриолярного цилиндра на проксимальном плюсе
Слайд 16

Рис. 3. Ультраструктура центросомы в интерфазной клетке млекопитающих на последовательных серийных срезах [19].

Процентриль

«пустой» просвет центриолярного цилиндра на проксимальном плюсе

Упрощенная схема строения центросомы в интерфазных клетках млекопитающих в середине S-фазы клеточного цикла.
Слайд 17

Упрощенная схема строения центросомы в интерфазных клетках млекопитающих в середине S-фазы клеточного цикла.

Центросома, окруженная комплексом Гольджи. На ультратонком срезе располагается одна центриоль из пары. ЦЕНТРОСОМА МИТОХОНДРИЯ КОМПЛЕКС ГОЛЬДЖИ
Слайд 18

Центросома, окруженная комплексом Гольджи. На ультратонком срезе располагается одна центриоль из пары

ЦЕНТРОСОМА МИТОХОНДРИЯ КОМПЛЕКС ГОЛЬДЖИ

Центросома и система микротрубочек в профазной, метафазной и интерфазной клетках. Световая микроскопия. Тройное иммунофлуоресцентное окрашивание выявляет микротрубочки (красный цвет), центросому (зеленый цвет) и ДНК (синий цвет). Положение центросом показано стрелками.
Слайд 19

Центросома и система микротрубочек в профазной, метафазной и интерфазной клетках. Световая микроскопия. Тройное иммунофлуоресцентное окрашивание выявляет микротрубочки (красный цвет), центросому (зеленый цвет) и ДНК (синий цвет). Положение центросом показано стрелками.

Микротрубочки и связь с клиникой. Синдром неподвижных ресничек, или синдром первичной дискинезии ресничек (syndrome of immobile cilia or immotile cilia syndrome) - гетерогенная группа заболеваний (МIМ:242630, 242670, 242680, 244400) [14, 38]. Синдром Картагенера рассматривают как классический вариан
Слайд 20

Микротрубочки и связь с клиникой

Синдром неподвижных ресничек, или синдром первичной дискинезии ресничек (syndrome of immobile cilia or immotile cilia syndrome) - гетерогенная группа заболеваний (МIМ:242630, 242670, 242680, 244400) [14, 38]. Синдром Картагенера рассматривают как классический вариант первичной дискинезии ресничек [37], характерным признаком которого, помимо бронхолегочных заболеваний и поражения носоглотки, является обратное расположение внутренних органов (situs inversus). Впервые эта патология описана А.К. Зивертом в 1902 г. в журнале «Русский врач» [46].Клиника: синдром характеризуется повторяющимися инфекциями дыхательных путей, хроническим бронхитом, пансинуситом, отитом, бесплодием (мужским и женским). У пациентов развиваются аносмия, полипы носовой полости, умеренное снижение слуха по проводящему типу [4, 5, 10].Развитие бронхолегочных инфекций и, нередко, бесплодия связано с нарушением двигательной активности ресничек мерцательного эпителия слизистой оболочки дыхательных путей и изменением числа синглетов и дуплетов микротрубочек в аксонеме фимбрий воронки и полости маточных труб, в аксонеме ресничек клеток реснитчатого эпителия дыхательных путей и жгутиков сперматозоидов.

Мы́шечное сокраще́ние — реакция мышечных клеток на воздействие нейромедиатора, реже гормона, проявляющаяся в уменьшении длины клетки. Эта жизненно важная функция организма, связанная с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами
Слайд 21

Мы́шечное сокраще́ние — реакция мышечных клеток на воздействие нейромедиатора, реже гормона, проявляющаяся в уменьшении длины клетки. Эта жизненно важная функция организма, связанная с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами

Двигательные органеллы клетки Слайд: 22
Слайд 22
Основой всех типов мышечного сокращения служит взаимодействие актина и миозина. В скелетных мышцах за сокращение отвечают миофибриллы (примерно две трети сухого веса мышц). Миофибриллы — структуры толщиной 1 — 2 мкм, состоящие из саркомеров — структур длиной около 2,5 мкм, состоящих из актиновых и м
Слайд 23

Основой всех типов мышечного сокращения служит взаимодействие актина и миозина. В скелетных мышцах за сокращение отвечают миофибриллы (примерно две трети сухого веса мышц). Миофибриллы — структуры толщиной 1 — 2 мкм, состоящие из саркомеров — структур длиной около 2,5 мкм, состоящих из актиновых и миозиновых (тонких и толстых) филаментов и Z-дисков, соединённых с актиновыми филаментами. Сокращение происходит при увеличении концентрации в цитоплазме ионов Ca2+ в результате скольжения миозиновых филаментов относительно актиновых. Источником энергии сокращения служит АТФ. КПД мышечной клетки около 50 %.

Скольжение миозина относительно актина Головки миозина расщепляют АТФ и за счет высвобождающейся энергии меняют конформацию, скользя по актиновым филаментам. Цикл можно разделить на 4 стадии: Свободная головка миозина связывается с АТФ и гидролизует его до АДФ и фосфата и остаётся связанной с ними.
Слайд 24

Скольжение миозина относительно актина Головки миозина расщепляют АТФ и за счет высвобождающейся энергии меняют конформацию, скользя по актиновым филаментам. Цикл можно разделить на 4 стадии: Свободная головка миозина связывается с АТФ и гидролизует его до АДФ и фосфата и остаётся связанной с ними. (Обратимый процесс — энергия, выделившаяся в результате гидролиза, запасается в изменённой конформации миозина). Головки миозина слабо связывается со следующей субъединицей актина, фосфат отделяется, и это приводит к прочному связыванию головки миозина с актиновым филаментом. Эта реакция уже необратима. Головка претерпевает конформационное изменение, производящее подтягивание толстого филамента к Z-диску (или, что эквивалентно, свободных концов тонких филаментов друг к другу). Отделяется АДФ, за счёт этого головка отделяется от актинового филамента. Присоединяется новая молекула АТФ.

Далее цикл повторяется до уменьшения концентрации ионов Ca2+ или исчерпании запаса АТФ (в результате смерти клетки). Скорость скольжения миозина по актину ≈15 мкм/сек. В миозиновом филаменте много (около 500) молекул миозина и, следовательно, при сокращении цикл повторяется сотнями головок сразу, чт
Слайд 25

Далее цикл повторяется до уменьшения концентрации ионов Ca2+ или исчерпании запаса АТФ (в результате смерти клетки). Скорость скольжения миозина по актину ≈15 мкм/сек. В миозиновом филаменте много (около 500) молекул миозина и, следовательно, при сокращении цикл повторяется сотнями головок сразу, что и приводит к быстрому и сильному сокращению. Следует заметить, что миозиин ведёт себя как фермент — актин-зависимая АТФаза. Так как каждое повторение цикла связано с гидролизом АТФ, а следовательно, с положительным изменением свободной энергии, то процесс однонаправленный. Миозин движется по актину только в сторону плюс-конца

Источник энергии для сокращения. Для сокращения мышцы используется энергия гидролиза АТФ, но мышечная клетка имеет крайне эффективную систему регенерации запаса АТФ, так что в расслабленной и работающей мышце содержание АТФ примерно равно. Фермент фосфокреатинкиназа катализирует реакцию между АДФ и
Слайд 26

Источник энергии для сокращения

Для сокращения мышцы используется энергия гидролиза АТФ, но мышечная клетка имеет крайне эффективную систему регенерации запаса АТФ, так что в расслабленной и работающей мышце содержание АТФ примерно равно. Фермент фосфокреатинкиназа катализирует реакцию между АДФ и креатинфосфатом, продукты которой — АТФ и креатин. Креатинфосфат содержит больше запасённой энергии, чем АТФ. Благодаря этому механизму при вспышке активности в мышечной клетке падает содержание именно креатинфосфата, а количество универсального источника энергии — АТФ — не изменяется.

Механизм регуляции. В основном в регуляции мышечной активности участвуют нейроны, но есть случаи, когда сокращением гладкой мускулатуры управляют и гормоны (например, адреналин и окситоцин).
Слайд 27

Механизм регуляции

В основном в регуляции мышечной активности участвуют нейроны, но есть случаи, когда сокращением гладкой мускулатуры управляют и гормоны (например, адреналин и окситоцин).

Основные белки миофибрилл
Слайд 28

Основные белки миофибрилл

Литература. Б. Альбертс, Д. Брей, Дж. Льюис, М. Рефф, К. Робертс, Дж. Уотсон, Молекулярная биология клетки — В 3-х т. — Пер. с англ. — Т.2. — М.: Мир, 1994. — 540 с. М. Б. Беркинблит, С. М. Глаголев, В. А. Фуралев, Общая биология — В 2-х ч. — Ч.1. — М.:МИРОС, 1999. — 224 с.: ил.
Слайд 29

Литература

Б. Альбертс, Д. Брей, Дж. Льюис, М. Рефф, К. Робертс, Дж. Уотсон, Молекулярная биология клетки — В 3-х т. — Пер. с англ. — Т.2. — М.: Мир, 1994. — 540 с. М. Б. Беркинблит, С. М. Глаголев, В. А. Фуралев, Общая биология — В 2-х ч. — Ч.1. — М.:МИРОС, 1999. — 224 с.: ил.

Список похожих презентаций

Структура бактериальной клетки

Структура бактериальной клетки

МОРФОЛОГИЯ У МИКРОБОВ – ЭТО ФОРМА, РАЗМЕРЫ, РАСПОЛОЖЕНИЕ ДРУГ ОТНОСИТЕЛЬНО ДРУГА, СТРУКТУРНЫЕ ОСОБЕННОСТИ, ТИНКТОРИАЛЬНЫЕ СВОЙСТВА (ОТНОШЕНИЕ К ОКРАСКЕ). ...
Строение клетки

Строение клетки

Цели проекта:. Изучить строение клетки Познать жизнедеятельность клетки Рассмотреть роль клетки в жизни организмов. Цитология. ЦИТОЛОГИЯ -наука о ...
Строение растительной клетки

Строение растительной клетки

Цели и задачи урока. Сформировать у учащихся знания о строении растительной клетки, значении её частей и органоидов, совершенствовать навыки по приготовлению ...
Состав клетки

Состав клетки

Тема: Химический состав клетки: неорганические и органические вещества. Цель урока? познакомиться с химическим составом клеток; сформировать понятия ...
Строение и химический состав клетки

Строение и химический состав клетки

Выполнение домашнего задания начинайте с чтения параграфа. При этом пользуйтесь рисунками, на которые имеются ссылки. Закончив чтение параграфа, найдите ...
Особенности строения животной клетки

Особенности строения животной клетки

Общий план строения. Особенности строения. Животная клетка не имеет плотной клеточной стенки. В ней отсутствуют вакуоли, характерные для растений ...
Поверхностный аппарат клетки

Поверхностный аппарат клетки

Мембрана. Ее строение. Мембрана – органоид клетки, который обеспечивает защиту и обмен веществ Клеточные мембраны - важнейший компонент живого содержимого ...
Живые клетки

Живые клетки

Цели урока. Познакомить учащихся с историей открытия клетки, показать роль увеличительных приборов в изучении клеточного строения растений и животных ...
Жизнедеятельность клетки

Жизнедеятельность клетки

Поступление веществ в клетку Взаимосвязь клеток с другими клетками. Межклеточное вещество Межклеточники. Деление клетки Рост и развитие. Поступление ...
Живые клетки

Живые клетки

Из истории. Это произошло более 300 лет назад. Английский ученый Роберт Гук рассматривал под микроскопом Тонкий срез бутылочной пробки, Сделанной ...
Живые клетки

Живые клетки

Цель урока. развитие мыслительных процессов через осознание и осмысление учебного материала. Задачи урока. способствовать формированию представлений ...
Деление клетки митоз

Деление клетки митоз

Типы деления клеток. соматических половых. Мейоз греч "мейоз" - уменьшение. Амитоз. Митоз греч "митос" - нить. Митотический цикл. совокупность последовательных ...
Деление клетки - митоз

Деление клетки - митоз

Деление клетки - митоз. Клеточный цикл Интерфаза Митоз. Интерфаза. Увеличение клетки в размерах Репликация хромосом Удвоение органоидов. Митоз (деление ...
Деление клетки

Деление клетки

Этапы митоза:. Интерфаза Профаза Метафаза Анафаза телофаза. профаза анафаза телофаза интерфаза. Интерфаза – подготовка к делению. Удвоение ДНК Синтез ...
Химический состав клетки

Химический состав клетки

Макроэлементы. I группа – кислород, углерод, водород, азот. Содержание в клетке ~ 98 % от всего состава клетки II группа – фосфор, сера, калий, магний, ...
Жизнедеятельность клетки

Жизнедеятельность клетки

Цель урока:. используя знания о клетке, доказать, что клетка обладает признаками живого организма. Жизнедеятельность. — совокупность процессов, протекающих ...
Жизнедеятельность клетки

Жизнедеятельность клетки

Основные процессы в клетке. Движение цитоплазмы. Движение цитоплазмы Питание клетки Дыхание Обмен веществ. Е. Обмен веществ - главное проявление жизнедеятельности ...
Особенности строения растительной клетки

Особенности строения растительной клетки

Строение клетки. Оболочка. Прочная, бесцветная, прозрачная, легко пропускает свет внутрь клетки. Придает клетке определенную форму, защищает ее содержимое. ...
Клетка. строение клетки

Клетка. строение клетки

высокий *** повышенный ** базовый *. Структурная единица Живая, открытая Растет, создает, хранит, развивается Признак деления на прокариот и эукариот ...

Конспекты

Строение растительной клетки

Строение растительной клетки

Технологическая карта урока биологии в 6 «А» классе. Урок-исследование по теме «. Строение растительной клетки. » - 1 час. Цель урока. : повторение, ...
Химический состав клетки .Органические вещества :белки, жиры, углеводы, нуклеиновые кислоты

Химический состав клетки .Органические вещества :белки, жиры, углеводы, нуклеиновые кислоты

Западно-Казахстанская область. Казталовский район. с.Жалпактал,СОШ им.Г.Молдашева. Учитель биологии. Бакманова Анаргуль Сериковна. План-конспект ...
Двумембранные органоиды клетки

Двумембранные органоиды клетки

Урок биологии в 10 классе. Саба. қ тақырыбы. : «Двумембранные органоиды клетки». Мақсат. : создание педагогической ситуации, способствующей ...
Химический состав клетки

Химический состав клетки

Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа № 9». города Усть – Илимска, Иркутской области. ...
Химический состав клетки

Химический состав клетки

Технологическая карта урока. Предмет. биология. . Класс. . 5. . . Тип урока. . Изучение нового материала. . . Тема. . ...
Строение растительной клетки

Строение растительной клетки

Методическое описание интерактивного электронного образовательного ресурса. Автор: Алексейцева Ольга Яковлевна. . Должность: учитель химии ...
Химический состав клетки

Химический состав клетки

Методическая разработка урока биологии для 5 класса в рамках ФГОС «Химический состав клетки». Автор: Бабенко Мария Сергеевна, составлена для УМК ...
Органические вещества клетки

Органические вещества клетки

Технологическая карта «Органические вещества клетки». Проводится парно, ЗА ТРИ БЛОКА – 3 ОЦЕНКИ! Впишите ваши фамилии и класс_____________________________________________________. ...
Особенности растительной клетки

Особенности растительной клетки

Государственное бюджетное образовательное учреждение. Центр образования №1456 г. Москвы. Конспект урока по биологии в 6 классе. «Особенности ...
История открытия клетки

История открытия клетки

Урок биология. . Учитель Алимбаева А.К. Тема урока: «История открытия клетки». Тип урока: изучение нового материала. Вид урока: лабораторная ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:10 июля 2019
Категория:Биология
Классы:
Содержит:29 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации