- Строение и эволюция звёзд

Презентация "Строение и эволюция звёзд" (11 класс) по астрономии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60
Слайд 61
Слайд 62
Слайд 63
Слайд 64
Слайд 65
Слайд 66
Слайд 67
Слайд 68
Слайд 69

Презентацию на тему "Строение и эволюция звёзд" (11 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Астрономия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 69 слайд(ов).

Слайды презентации

Звезды: строение и эволюция
Слайд 1

Звезды: строение и эволюция

Классификация нормальных звезд. Спектры большинства звезд эмпирически удалось расположить в виде последовательности, вдоль которой линии одних химических элементов постепенно ослабевают, а других – усиливаются. Сходные между собой спектры объединяются в спектральные классы. Тонкие различия между ним
Слайд 2

Классификация нормальных звезд

Спектры большинства звезд эмпирически удалось расположить в виде последовательности, вдоль которой линии одних химических элементов постепенно ослабевают, а других – усиливаются. Сходные между собой спектры объединяются в спектральные классы. Тонкие различия между ними позволяют выделить подклассы. Дальнейшие исследования показали, что звезды, принадлежащие различным спектральным классам, отличаются своими температурами. В Гарвардской классификации спектральные типы (классы) обозначены буквами латинского алфавита: О, В, A, F, G, К и М. Поскольку в эпоху разработки этой классификации связь между видом спектра и температурой не была еще известна, то после установления соответствующей зависимости пришлось изменить порядок спектральных классов, который первоначально совпадал с алфавитным расположением букв (мнемоническое правило: O Be A Fine Girl Kiss Me). Внутри каждого спектрального класса можно установить плавную последовательность подклассов, переходящих из одного в другой. Каждый класс (кроме класса О) делится на 10 подклассов, обозначаемых цифрами от 0 до 9, которые ставятся после обозначения спектрального класса, например, В8, А0, G5. Спектральный класс О подразделяется на подклассы от O2 до O9,5.

Диаграмма Герцшпрунга – Рассела. В самом начале XX в. датский астроном Герцшпрунг и несколько позже американский астрофизик Рассел установили существование зависимости между видом спектра (т.е. температурой) и светимостью звезд. Эта зависимость иллюстрируется графиком, по одной оси которого откладыв
Слайд 5

Диаграмма Герцшпрунга – Рассела

В самом начале XX в. датский астроном Герцшпрунг и несколько позже американский астрофизик Рассел установили существование зависимости между видом спектра (т.е. температурой) и светимостью звезд. Эта зависимость иллюстрируется графиком, по одной оси которого откладывается спектральный класс, а по другой — абсолютная звездная величина. Такой график называется диаграммой спектр – светимость или диаграммой Герцшпрунга – Рассела

Классы светимости. Внимательное изучение диаграммы позволяет выделить на ней ряд других последовательностей, правда, обладающих значительно большей дисперсией, чем главная. Эти последовательности называются классами светимости и обозначаются римскими цифрами от I до VII, проставленными после наимено
Слайд 8

Классы светимости

Внимательное изучение диаграммы позволяет выделить на ней ряд других последовательностей, правда, обладающих значительно большей дисперсией, чем главная. Эти последовательности называются классами светимости и обозначаются римскими цифрами от I до VII, проставленными после наименования спектрального класса. Таким образом, полная классификация звезд оказывается зависящей от двух параметров, один из которых характеризует спектр (температуру), а другой – светимость. Солнце, относящееся к главной последовательности, попадает в V класс светимости и обозначение его спектра G2V. Эта классификация звезд называется МКК (Моргана, Кинана, Кельман).

Внутреннее строение Солнца. Зона ядерных реакций в центре Зона лучистого переноса энергии Конвективная зона Фотосфера Хромосфера Корона
Слайд 9

Внутреннее строение Солнца

Зона ядерных реакций в центре Зона лучистого переноса энергии Конвективная зона Фотосфера Хромосфера Корона

Физические основы внутреннего строения звезд. Нет ничего проще, чем звезда. (А. Эддингтон). Физическое состояние стационарных звезд определяется условиями гидростатического (макроскопические параметры - масса, радиус - изменяются на больших временах >> динамического времени) и теплового (звезд
Слайд 13

Физические основы внутреннего строения звезд

Нет ничего проще, чем звезда. (А. Эддингтон)

Физическое состояние стационарных звезд определяется условиями гидростатического (макроскопические параметры - масса, радиус - изменяются на больших временах >> динамического времени) и теплового (звезды не взрываются, их светимость меняется плавно) равновесия.

Гидростатическое равновесие. Для сферически -симметричного случая Прямым следствием уравнения гидростатического равновесия является теорема вириала, связывающая тепловую (кинетическую) и потенциальную (гравитационную) энергию стационарной звезды. Умножая обе части уравнения гидростатического равнове
Слайд 14

Гидростатическое равновесие

Для сферически -симметричного случая Прямым следствием уравнения гидростатического равновесия является теорема вириала, связывающая тепловую (кинетическую) и потенциальную (гравитационную) энергию стационарной звезды. Умножая обе части уравнения гидростатического равновесия на r и интегрируя по dm по частям, получим

Политропная модель. Удельная тепловая энергия. (γ – показатель, n – индекс политропы). Отсюда можно, например, оценить температуру в центре Солнца. Пусть вся звезда состоит из идеального одноатомного газа, γ =5/3, Q = (3/2)NkT. С учетом молекулярного веса получим T ~ 107 K. Точное значение – 14·106
Слайд 15

Политропная модель

Удельная тепловая энергия

(γ – показатель, n – индекс политропы)

Отсюда можно, например, оценить температуру в центре Солнца. Пусть вся звезда состоит из идеального одноатомного газа, γ =5/3, Q = (3/2)NkT. С учетом молекулярного веса получим T ~ 107 K. Точное значение – 14·106 K.

(адиабата) На единицу массы

Частные случаи политропных моделей. n = 3/2, γ = 5/3 (идеальный одноатомный газ) U = -2Q, E = -Q Звезда обладает отрицательной теплоемкостью, dE/dT
Слайд 16

Частные случаи политропных моделей

n = 3/2, γ = 5/3 (идеальный одноатомный газ) U = -2Q, E = -Q Звезда обладает отрицательной теплоемкостью, dE/dT

Теория белых карликов. Плотность очень велика, ρ ~ 105–109 г/см3. Вещество состоит из ядер и свободных электронов, которые подчиняются статистике Ферми – Дирака. Объем фазовой ячейки Число электронов в единице объема (pF – граничный импульс Ферми) Введем параметр x = pF/mec. При x > 1 – релятивис
Слайд 17

Теория белых карликов

Плотность очень велика, ρ ~ 105–109 г/см3. Вещество состоит из ядер и свободных электронов, которые подчиняются статистике Ферми – Дирака. Объем фазовой ячейки Число электронов в единице объема (pF – граничный импульс Ферми) Введем параметр x = pF/mec. При x > 1 – релятивистские.

Чандрасекаровский предел массы

Считается, что белые карлики - это обнажившееся ядро звезды, находившейся до сброса наружных слоев на ветви сверхгигантов. Когда оболочка планетарной туманности рассеется, ядро звезды, находившейся до этого на ветви сверхгигантов, окажется в верхнем левом углу диаграммы ГР. Остывая, оно переместится
Слайд 18

Считается, что белые карлики - это обнажившееся ядро звезды, находившейся до сброса наружных слоев на ветви сверхгигантов. Когда оболочка планетарной туманности рассеется, ядро звезды, находившейся до этого на ветви сверхгигантов, окажется в верхнем левом углу диаграммы ГР. Остывая, оно переместится в верхний угол диаграммы для белых карликов. Ядро будет горячее, маленькое и голубое с низкой светимостью - это и характеризует звезду как белый карлик. Белые карлики состоят из углерода и кислорода с небольшими добавками водорода и гелия, однако у массивных сильно проэволюционировавших звезд ядро может состоять из кислорода, неона или магния. Ядерные реакции в белом карлике не идут. Для белых карликов существует зависимость "масса-радиус", причем чем больше масса, тем меньше радиус.

Сравнение свойств белого карлика Сириус В с Землей и Солнцем
Слайд 19

Сравнение свойств белого карлика Сириус В с Землей и Солнцем

Перенос излучения в звездах. Перенос энергии из недр звезды к ее поверхности может осуществляться различными механизмами: излучением, электронной теплопроводностью, конвекцией. Для нормальных звезд в большинстве случаев этот перенос обусловлен лучистой теплопроводностью. Лучистый перенос представляе
Слайд 20

Перенос излучения в звездах

Перенос энергии из недр звезды к ее поверхности может осуществляться различными механизмами: излучением, электронной теплопроводностью, конвекцией. Для нормальных звезд в большинстве случаев этот перенос обусловлен лучистой теплопроводностью. Лучистый перенос представляет собой диффузионный процесс. Фотоны многократно рассеиваются, поглощаются и переизлучаются (за счет томсоновского рассеяния и тормозного механизма излучения). Коэффициент диффузии равен D = cl/3, где l – средняя длина свободного пробега фотонов, l ~ 1/κρ (κ – «непрозрачность», κ = α/ρ). Время диффузии tD ~ R2/D. Для Солнца время диффузии фотонов составляет около миллиона лет. При некоторых условиях (градиент температуры выше адиабатического) радиальное распределение плотности оказывается неустойчивым и возникает конвекция. Внешняя конвективная зона имеется на Солнце.

Непрозрачность вещества в недрах звезд
Слайд 21

Непрозрачность вещества в недрах звезд

Уравнения звездной структуры. X, Y, Z – весовые доли элементов: водорода, гелия и др.
Слайд 23

Уравнения звездной структуры

X, Y, Z – весовые доли элементов: водорода, гелия и др.

Модель Солнца
Слайд 24

Модель Солнца

Соотношение масса – светимость. Из уравнений, описывающих структуру нормальных звезд, можно найти связь между массой и светимостью звезды. Для звезд с массой порядка солнечной Характерное время жизни звезды на главной последовательности (ηn – эффективность ядерных реакций (~ 0.007), Mc – масса ядра
Слайд 25

Соотношение масса – светимость

Из уравнений, описывающих структуру нормальных звезд, можно найти связь между массой и светимостью звезды. Для звезд с массой порядка солнечной Характерное время жизни звезды на главной последовательности (ηn – эффективность ядерных реакций (~ 0.007), Mc – масса ядра звезды). Массивные звезды эволюционируют быстрее.

Эддингтоновский предел светимости. Этот предел определяется равенством силы светового давления на электрон и силы притяжения протона звездой.
Слайд 27

Эддингтоновский предел светимости

Этот предел определяется равенством силы светового давления на электрон и силы притяжения протона звездой.

Ядерные источники энергии звезд. Если бы Солнце светило только за счет запасов тепловой энергии, то их хватило бы на ~ 30 млн. лет. При типичных температурах средняя кинетическая энергия частиц в центре звезды ~ 1 кэВ. В то же время для преодоления кулоновского отталкивания двух протонов необходима
Слайд 28

Ядерные источники энергии звезд

Если бы Солнце светило только за счет запасов тепловой энергии, то их хватило бы на ~ 30 млн. лет.

При типичных температурах средняя кинетическая энергия частиц в центре звезды ~ 1 кэВ. В то же время для преодоления кулоновского отталкивания двух протонов необходима энергия ~ 1 МэВ. При максвелловском распределении доля частиц с такой энергией ~ e-1000 ≈ 10-430. В Солнце всего 1057 частиц, т.е. классическая вероятность взаимодействия двух протонов пренебрежимо мала. Однако, вероятность такого взаимодействия значительно увеличивается с учетом законов квантовой механики за счет туннельного эффекта.

Ядерные реакции в звездах. Основные типы ядерных реакций в звездах – это так называемый протон-протонный и углеродный (CNO) циклы. Первый доминирует при T
Слайд 30

Ядерные реакции в звездах

Основные типы ядерных реакций в звездах – это так называемый протон-протонный и углеродный (CNO) циклы. Первый доминирует при T

Ядерные реакции в звездах: протон-протонный цикл. Вторая цепочка дает побочные продукты: Последний распад дает нейтрино высоких энергий (8–9 МэВ).
Слайд 31

Ядерные реакции в звездах: протон-протонный цикл

Вторая цепочка дает побочные продукты:

Последний распад дает нейтрино высоких энергий (8–9 МэВ).

Основные цепи реакций превращения водорода в гелий, характерные для звезд с массами, близкими к солнечным. Две реакции, показанные слева вне основного пути обычно не относятся к pp-циклу, а существенны только при точном подсчете количества высокоэнергетических нейтрино. С точки зрения энерговыделени
Слайд 32

Основные цепи реакций превращения водорода в гелий, характерные для звезд с массами, близкими к солнечным. Две реакции, показанные слева вне основного пути обычно не относятся к pp-циклу, а существенны только при точном подсчете количества высокоэнергетических нейтрино. С точки зрения энерговыделения существенны только первые две цепочки.

Ядерные реакции в звездах: углеродный (CNO) цикл. Углерод здесь выступает в роли катализатора. Количество энергии, выделяемой в обоих циклах, примерно одинаково.
Слайд 34

Ядерные реакции в звездах: углеродный (CNO) цикл

Углерод здесь выступает в роли катализатора. Количество энергии, выделяемой в обоих циклах, примерно одинаково.

Горение гелия
Слайд 35

Горение гелия

Горение C и O на поздних стадиях эволюции
Слайд 36

Горение C и O на поздних стадиях эволюции

Горение кремния и образование элементов до железного пика
Слайд 37

Горение кремния и образование элементов до железного пика

Fe group
Слайд 38

Fe group

Эволюция звезд после главной последовательности. При достаточно больших массах звезд (> 0.5 солнечной) нет глобального перемешивания, поэтому водород в центре постепенно истощается. Появляется слоевой источник энергии и изотермическое гелиевое ядро. Звезда начинает разбухать и ее радиус увеличива
Слайд 39

Эволюция звезд после главной последовательности

При достаточно больших массах звезд (> 0.5 солнечной) нет глобального перемешивания, поэтому водород в центре постепенно истощается. Появляется слоевой источник энергии и изотермическое гелиевое ядро. Звезда начинает разбухать и ее радиус увеличивается в десятки раз. На диаграмме Гецшпрунга – Рассела звезда переходит в область красных гигантов.

Планетарные туманности. Планетарная туманность является сброшенными верхними слоями сверхгиганта. Свечение обеспечивается возбуждением газа ультрафиолетовым излучением центральной звезды. Туманность излучает в оптическом диапазоне, газ туманности нагрет до температуры порядка 10000 К.
Слайд 46

Планетарные туманности

Планетарная туманность является сброшенными верхними слоями сверхгиганта. Свечение обеспечивается возбуждением газа ультрафиолетовым излучением центральной звезды. Туманность излучает в оптическом диапазоне, газ туманности нагрет до температуры порядка 10000 К.

Схема эволюции одиночной звезды
Слайд 48

Схема эволюции одиночной звезды

Сверхновые. Подавляющее большинство сверхновых (SN) можно классифицировать в один из двух типов: SNI и SNII. Главный признак, по которому ведется классификация, – наличие в оптическом спектре эмиссий водорода (тип SNI) или их отсутствие (тип SNII). Имеются различия в кривых блеска. Физически SNI и S
Слайд 49

Сверхновые

Подавляющее большинство сверхновых (SN) можно классифицировать в один из двух типов: SNI и SNII. Главный признак, по которому ведется классификация, – наличие в оптическом спектре эмиссий водорода (тип SNI) или их отсутствие (тип SNII). Имеются различия в кривых блеска. Физически SNI и SNII – также разные типы объектов. Механизмы вспышек сверхновых до конца не ясны.

При достаточно большой плотности ядра давление электронного вырожденного газа становится неспособным противостоять дальнейшему сжатию, и свободные электроны соединяются с протонами, образуя нейтроны и испуская нейтрино. Нейтрино, которые испускаются прямо из ядра, способствуют дальнейшей потере им э
Слайд 50

При достаточно большой плотности ядра давление электронного вырожденного газа становится неспособным противостоять дальнейшему сжатию, и свободные электроны соединяются с протонами, образуя нейтроны и испуская нейтрино. Нейтрино, которые испускаются прямо из ядра, способствуют дальнейшей потере им энергии и еще более быстрому коллапсу. Ядро коллапсирует столь стремительно (за время порядка секунды), что наружные слои звезды отстают от него. Когда ядро уменьшится до размера около 10 км, нейтронный газ станет вырожденным и резко остановит дальнейшее сжатие. Направленная наружу ударная волна увлечет оставшийся материал оболочки за собой, сжимая и нагревая его. Конечным результатом будет формирование нейтронной звезды или черной дыры в ядре и полный разрыв остатка звезды с высвобождением энергии порядка 1053 эрг в нейтрино и 1051 эрг в кинетической и световой энергии.

Примеры сверхновых типа Ia
Слайд 51

Примеры сверхновых типа Ia

~1.5 ~10 ~0.5 ~1
Слайд 53

~1.5 ~10 ~0.5 ~1

Мультипликация NASA, показывающая взрыв звезды как сверхновой и превращение ее в пульсар.
Слайд 54

Мультипликация NASA, показывающая взрыв звезды как сверхновой и превращение ее в пульсар.

Переменные звезды
Слайд 55

Переменные звезды

Соотношение период-светимость. При определенных условиях в звезде развиваются автоколебательные процессы, приводящие к периодическому изменению ее светимости. Механизм основан на изменении состояния ионизации гелия и, соответственно, - коэффициента непрозрачности (С.А. Жевакин). Для цефеид существуе
Слайд 56

Соотношение период-светимость

При определенных условиях в звезде развиваются автоколебательные процессы, приводящие к периодическому изменению ее светимости. Механизм основан на изменении состояния ионизации гелия и, соответственно, - коэффициента непрозрачности (С.А. Жевакин). Для цефеид существует связь между периодом и светимостью. Это позволяет достаточно надежно оценивать расстояния до этих звезд, что делает их «маяками Вселенной».

Нейтронные звезды. При больших плотностях из-за вырождения могут идти процессы нейтронизации: Пороговые энергии для разных элементов различны. При массах ядра звезды больше Чандрасекаровского предела (~ 1.2 массы Солнца), но меньше ~ 2.5 солнечных после исчерпания значительной части ядерного горючег
Слайд 57

Нейтронные звезды

При больших плотностях из-за вырождения могут идти процессы нейтронизации:

Пороговые энергии для разных элементов различны.

При массах ядра звезды больше Чандрасекаровского предела (~ 1.2 массы Солнца), но меньше ~ 2.5 солнечных после исчерпания значительной части ядерного горючего происходит катастрофический коллапс и образуется нейтронная звезда (размер ~ 10 км). Нейтронные звезды были открыты в 1967 г. (пульсары).

Черные дыры. Гравитационный радиус (радиус Шварцшильда). Для Солнца rg = 3 км.
Слайд 58

Черные дыры

Гравитационный радиус (радиус Шварцшильда)

Для Солнца rg = 3 км.

Проблема солнечных нейтрино и нейтринная астрономия. Количество нейтрино, излучаемое Солнцем за секунду, определяется только светимостью Солнца, т.к. при выделении 26.7 МэВ рождается 2 нейтрино. Выполненные к настоящему времени измерения дают величину потока нейтрино от Солнца заметно меньше ожидаем
Слайд 60

Проблема солнечных нейтрино и нейтринная астрономия

Количество нейтрино, излучаемое Солнцем за секунду, определяется только светимостью Солнца, т.к. при выделении 26.7 МэВ рождается 2 нейтрино. Выполненные к настоящему времени измерения дают величину потока нейтрино от Солнца заметно меньше ожидаемой.

Баксанская нейтринная обсерватория. Подземная лаборатория галлий-германиевого нейтринного телескопа (ГГНТ) для детектирования солнечных нейтрино с мишенью из 60 тонн металлического галлия, расположенного на расстоянии 3,5 км от входа в тоннель.
Слайд 62

Баксанская нейтринная обсерватория

Подземная лаборатория галлий-германиевого нейтринного телескопа (ГГНТ) для детектирования солнечных нейтрино с мишенью из 60 тонн металлического галлия, расположенного на расстоянии 3,5 км от входа в тоннель.

GALLEX. Result: 77.5 SNU SSM prediction: 129 SNU
Слайд 63

GALLEX

Result: 77.5 SNU SSM prediction: 129 SNU

Нейтринная обсерватория в Садбери. Нейтринная обсерватория в Садбери (Онтарио, Канада) (Sudbury Neutrino Observatory (SNO)) была построена в шахте на глубине 2070 метров. 1000 тонн сверхчистой тяжелой воды (D2O) залито в акриловый сосуд диаметром 12 метров. Черенковское излучение регистрируется 9600
Слайд 65

Нейтринная обсерватория в Садбери

Нейтринная обсерватория в Садбери (Онтарио, Канада) (Sudbury Neutrino Observatory (SNO)) была построена в шахте на глубине 2070 метров. 1000 тонн сверхчистой тяжелой воды (D2O) залито в акриловый сосуд диаметром 12 метров. Черенковское излучение регистрируется 9600 фотоумножителями. Детектор погружен в сверхчистую обычную воду, которая находится в бочкообразной полости диаметром 22 метра и высотой 34 метра, выкопанной в скале. За сутки детектор регистрирует около 10 нейтринный событий. Нейтринные потоки "борных" нейтрино, детектировались с помощью реакций (первая реакция (СС), протекающая с участием заряженных токов, чувствительна только к электронным нейтрино; вторая (NC), протекающая с участием нейтральных токов чувствительна ко всем нейтрино; упругое рассеяние (ES) чувствительно ко всем ароматам нейтрино, но к мюонным и тау в меньшей степени):

Строение и эволюция звёзд Слайд: 44
Слайд 66
Циклы солнечной активности
Слайд 68

Циклы солнечной активности

Строение и эволюция звёзд Слайд: 46
Слайд 69

Список похожих презентаций

Эволюция звёзд

Эволюция звёзд

Матерью каждого небесного тела, в том числе и звезды, можно смело именовать гравитацию, а отцом сопротивление материи бесконечному сжатию. Благодаря ...
Эволюция звёзд

Эволюция звёзд

СОДЕРЖАНИЕ. Звездная эволюция. Белые карлики. Наша галактика - млечный путь. История солнечной системы. Черные дыры. Нейтронные звезды. Имеется большое ...
Строение и эволюция вселенной

Строение и эволюция вселенной

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает ...
Строение и эволюция вселенной

Строение и эволюция вселенной

Содержание. Космология Типы галактик Скопления галактик Звёздные скопления Межзвёздное вещество Красное смещение Эффект Доплера Закон Хаббла Теория ...
Строение и эволюция вселенной

Строение и эволюция вселенной

Дать представление о структуре нашей Галактики Основные свойства ее Общее представление о скоплении звезд. Цели и задачи. Светлая полоса через все ...
Эволюция звёзд

Эволюция звёзд

Эволюция звезд зависит от двух сил: - гравитационной, - силы давления газа. Рис. 3.1. Схема строения атомов водорода, гелия и углерода. Протоны изображены ...
Строение и эволюция вселенной

Строение и эволюция вселенной

Содержание. Введение Строение Галактики Новое представление о строении Вселенной Эволюция Вселенной Теории эволюции Вселенной Теория Эдвина Хаббла. ...
Эволюция звёзд

Эволюция звёзд

Цикл жизни звёзды. Звёздная эволюция в астрономии. – последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении ...
Мир звёзд

Мир звёзд

17.12.2010 года. ТЕМА УРОКА: Мир звезд. -Сформировать представление о звездах, о размерах и природе Солнца как центра Солнечной системы и ближайшей ...
Строение солнца

Строение солнца

В Древнем Египте Солнце почиталось главным божеством. Персы, вавилоняне, китайцы, японцы почитали Солнце как источник жизни, первооснову всего сущего. ...
Строение солнечной системы

Строение солнечной системы

Развитие представлений о Солнечной системе. Аристотель учил, что Земля, являющаяся центром Вселенной, шарообразна. Доказательство шарообразности Земли ...
Строение атмосферы солнца

Строение атмосферы солнца

Солнечная атмосфера. Солнечная атмосфера состоит из 3х слоев: фотосфера, хромосфера, солнечная корона. Фотосфера - грануляция. Фотосфера - светящаяся ...
Созвездия звёзд и неба

Созвездия звёзд и неба

НЕМНОГО ИСТОРИИ. Клавдий Птолемей (ок.90-160 н.э.) Шарообразная Земля – неподвижна, а вокруг нее по круговым орбитам движутся Луна, Меркурий, Венера, ...
Происхождение и эволюция вселенной

Происхождение и эволюция вселенной

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает ...
Переменные звёзды. двойные звёзды. движение звёзд

Переменные звёзды. двойные звёзды. движение звёзд

Яркость некоторых звезд непостоянна и изменяется в течение определенных периодов времени — от часов до недель или даже года. Яркость переменной звезды ...
Определение расстояний до звёзд

Определение расстояний до звёзд

Расстояния до звёзд определяются по методу параллакса. Он известен более 2 тысяч лет, а к звездам его стали применять 160 лет назад. При этом измеряют ...
Образование и эволюция звезд и планет

Образование и эволюция звезд и планет

Состав звезд. Большинство звезд состоит в основном из водорода (60…90%) и гелия (10…40%) и тяжелых элементов (0.1…3%). Такие звезды называются звездами ...
Многообразие звёзд

Многообразие звёзд

Определите, какие признаки относятся к Солнцу, а какие – к Земле. 1.Шарообразная форма. Солнце. Земля. 2. Источник света и тепла. Солнце. 3. Не излучает ...
Строение мира

Строение мира

Содержание. Система мира Представления о мире древних египтян Представления о мире народов Междуречья Вселенная по представлению древних греков Система ...
Строение вселенной

Строение вселенной

Все́світ — весь матеріальний світ, різноманітний за формами, що їх приймає матерія та енергія, включаючи усі галактики, зорі, планети та інші космічні ...

Конспекты

Строение твердых тел. Кристаллические и аморфные тела

Строение твердых тел. Кристаллические и аморфные тела

Конспект урока. Строение твердых тел. Кристаллические и аморфные тела. Цель: сформировать знания о различии и строении твердых тел. Демонстрации: ...
Строение твёрдых, жидких и газообразных тел

Строение твёрдых, жидких и газообразных тел

Разработка урока физики в 7 классе по теме. . «Строение твёрдых, жидких и газообразных тел». Проблемно-мотивационный блок. Тема: Строение ...
Строение вещества. Молекулы

Строение вещества. Молекулы

План-конспект урока физики в 7 классе. по теме «Строение вещества. Молекулы». Автор:. Беркалиева Ирина Петровна,. учитель физики МОУ СОШ №2 ...
Строение вещества. Молекулы

Строение вещества. Молекулы

Конспект открытого урока по физике в 7-м классе. . Тема: "Строение вещества. Молекулы". . ЦЕЛИ:. Образовательна. я. :. Познакомить учащихся ...
Строение вещества

Строение вещества

Урок физики в 7 классе. Строение вещества. Цель урока:. . Сформировать у обучающихся детальное представление о строении вещества. Ход урока. ...
Строение вещества. Молекулы

Строение вещества. Молекулы

6. . . План-конспект урока физики в 7 классе. Тема: Строение вещества. Молекулы. Образовательные:. вызвать объективную необходимость изучения ...
Строение атомов

Строение атомов

МБОУ СОШ №3 г. Навашино. Нижегородская область. УРОК ПО ФИЗИКЕ. . ТЕМА «Строение атомов». (8 класс, 13-14 лет). ...
Строение вещества

Строение вещества

Урок-исследование. Изучение нового материала. Строение вещества. 7-й класс. . Тип урока: комбинированный урок. Цели урока: сформировать представление ...
Строение атома. Опыт Резерфорда

Строение атома. Опыт Резерфорда

. Муниципальное общеобразовательное учреждение. Заозерская. средняя общеобразовательная школа. Угличского района Ярославской области. ...
Строение атомного ядра

Строение атомного ядра

Урок физики в 9 классе. Тема: Строение атомного ядра. Цель урока:. познакомить учащихся с протонно-нейтронной моделью ядра, научить обобщать и ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.