- Строение и эволюция вселенной

Презентация "Строение и эволюция вселенной" (11 класс) по астрономии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38

Презентацию на тему "Строение и эволюция вселенной" (11 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Астрономия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 38 слайд(ов).

Слайды презентации

Строение и эволюция Вселенной. Преподаватель физики Шуваева Е.В.
Слайд 1

Строение и эволюция Вселенной

Преподаватель физики Шуваева Е.В.

Содержание. Космология Типы галактик Скопления галактик Звёздные скопления Межзвёздное вещество Красное смещение Эффект Доплера Закон Хаббла Теория Большого взрыва
Слайд 2

Содержание

Космология Типы галактик Скопления галактик Звёздные скопления Межзвёздное вещество Красное смещение Эффект Доплера Закон Хаббла Теория Большого взрыва

Космология - наука, изучающая строение и эволюцию Вселенной.
Слайд 3

Космология - наука, изучающая строение и эволюцию Вселенной.

Внесистемные единицы измерения. 1 световой год (1 св. г.) – расстояние, которое проходит свет за 1 год в вакууме – 9,5·1015 м; 1 астрономическая единица (1 а.е.) – среднее расстояние от Земли до Солнца (средний радиус земной орбиты) – 1,5·1011 м; 1 парсек (1 пк) - расстояние, с которого средний ради
Слайд 4

Внесистемные единицы измерения

1 световой год (1 св. г.) – расстояние, которое проходит свет за 1 год в вакууме – 9,5·1015 м; 1 астрономическая единица (1 а.е.) – среднее расстояние от Земли до Солнца (средний радиус земной орбиты) – 1,5·1011 м; 1 парсек (1 пк) - расстояние, с которого средний радиус земной орбиты (равный 1 а. е.), перпендикулярный лучу зрения, виден под углом в одну угловую секунду (1″) – 3·1016 м; 1 масса Солнца ( 1 Мʘ ) – 2·1030 кг.

Возраст Вселенной t=1,3·1010 лет Радиус Вселенной R=1,3·1010 св.л.
Слайд 5

Возраст Вселенной t=1,3·1010 лет Радиус Вселенной R=1,3·1010 св.л.

Галактики – это большие звёздные системы, в которых звёзды связаны друг с другом силами гравитации.
Слайд 6

Галактики – это большие звёздные системы, в которых звёзды связаны друг с другом силами гравитации.

Типы галактик. 1.Эллиптические 2.Спиральные 3.Неправильные
Слайд 7

Типы галактик

1.Эллиптические 2.Спиральные 3.Неправильные

Эллиптические галактики. Эллиптическая галактика М32
Слайд 8

Эллиптические галактики

Эллиптическая галактика М32

Имеют вид кругов или эллипсов Яркость плавно уменьшается от центра к периферии Не вращаются В них мало газа и пыли М ̴ 1013 Мʘ. Эллиптическая галактика М87
Слайд 9

Имеют вид кругов или эллипсов Яркость плавно уменьшается от центра к периферии Не вращаются В них мало газа и пыли М ̴ 1013 Мʘ

Эллиптическая галактика М87

Спиральные галактики. Галактика М104 Сомбреро
Слайд 10

Спиральные галактики

Галактика М104 Сомбреро

Состоят из ядра и нескольких спиральных рукавов или ветвей Ветви отходят непосредственно от ядра Вращаются В них много газа и пыли М ̴ 1012 Мʘ. спиральная галактика NGC 4414 из созвездия Волосы Вероники
Слайд 11

Состоят из ядра и нескольких спиральных рукавов или ветвей Ветви отходят непосредственно от ядра Вращаются В них много газа и пыли М ̴ 1012 Мʘ

спиральная галактика NGC 4414 из созвездия Волосы Вероники

Спиральная галактика М 33
Слайд 12

Спиральная галактика М 33

Спиральная галактика Андромеды
Слайд 13

Спиральная галактика Андромеды

Солнце и Солнечная система входят в состав галактики Млечный путь. Галактика Млечный путь состоит из ядра, находящегося в центре галактики, и трёх спиральных рукавов. Галактика Млечный путь (вид сверху)
Слайд 14

Солнце и Солнечная система входят в состав галактики Млечный путь. Галактика Млечный путь состоит из ядра, находящегося в центре галактики, и трёх спиральных рукавов.

Галактика Млечный путь (вид сверху)

Размеры галактики Млечный путь: диаметр диска галактики около 30 кпк ( 100 000 св.л.); толщина – около 1 000 св. л. Галактика Млечный путь (вид сбоку)
Слайд 15

Размеры галактики Млечный путь: диаметр диска галактики около 30 кпк ( 100 000 св.л.); толщина – около 1 000 св. л.

Галактика Млечный путь (вид сбоку)

Галактика Млечный путь вращается вокруг центра галактики. Один оборот вокруг центра галактики Солнце делает за 200 млн. лет. Положение Солнца в галактике Млечный путь
Слайд 16

Галактика Млечный путь вращается вокруг центра галактики. Один оборот вокруг центра галактики Солнце делает за 200 млн. лет.

Положение Солнца в галактике Млечный путь

Неправильные галактики. Большое Магелланово облако
Слайд 17

Неправильные галактики

Большое Магелланово облако

Отсутствует чётко выраженное ядро Нет вращательной симметрии Около половины вещества в них – межзвездный газ. Галактика NGC 1313
Слайд 18

Отсутствует чётко выраженное ядро Нет вращательной симметрии Около половины вещества в них – межзвездный газ

Галактика NGC 1313

Квазары. Квазары не являются звездами; это яркие и очень активные ядра галактик, расположенные на расстоянии в миллиарды световых лет от Земли. Квазар 3C 273 в созвездии Девы
Слайд 19

Квазары

Квазары не являются звездами; это яркие и очень активные ядра галактик, расположенные на расстоянии в миллиарды световых лет от Земли.

Квазар 3C 273 в созвездии Девы

Скопления галактик. Наряду с отдельными галактиками наблюдаются скопления галактик. Местная группа галактик состоит из 35 галактик. Включает в себя галактики Туманность Андромеды, Млечный путь, Большое Магелланово облако, Малое Магелланово облако и другие. Галактики Местной группы связаны общим тяго
Слайд 20

Скопления галактик

Наряду с отдельными галактиками наблюдаются скопления галактик. Местная группа галактик состоит из 35 галактик. Включает в себя галактики Туманность Андромеды, Млечный путь, Большое Магелланово облако, Малое Магелланово облако и другие. Галактики Местной группы связаны общим тяготением и движутся вокруг общего центра масс в созвездии Дева.

Звёздные скопления. Рассеянные Шаровые. скопление М50 в созвездии Единорога. скопление М13 в созвездии Геркулеса
Слайд 21

Звёздные скопления

Рассеянные Шаровые

скопление М50 в созвездии Единорога

скопление М13 в созвездии Геркулеса

Рассеянные звёздные скопления. Рассеянные звездные скопления встречаются вблизи галактической плоскости. Скопление «Плеяды»
Слайд 22

Рассеянные звёздные скопления

Рассеянные звездные скопления встречаются вблизи галактической плоскости.

Скопление «Плеяды»

Шаровые звёздные скопления. Шаровые скопления выделяются на звездном фоне благодаря значительному числу звезд и четкой сферической форме. Диаметр шаровых скоплений составляет от 20 до 100 пк. М= 104÷106 Мʘ. Скопление в созвездии Центавра
Слайд 23

Шаровые звёздные скопления

Шаровые скопления выделяются на звездном фоне благодаря значительному числу звезд и четкой сферической форме. Диаметр шаровых скоплений составляет от 20 до 100 пк. М= 104÷106 Мʘ

Скопление в созвездии Центавра

Межзвёздное вещество. Пространство между звёздами заполнено разрежённым веществом, излучением и магнитным полем. Если концентрация вещества становится большой, то мы можем видеть различного вида туманности. Газопылевые облака туманности М16 “Орёл” в созвездии Змеи
Слайд 24

Межзвёздное вещество

Пространство между звёздами заполнено разрежённым веществом, излучением и магнитным полем. Если концентрация вещества становится большой, то мы можем видеть различного вида туманности.

Газопылевые облака туманности М16 “Орёл” в созвездии Змеи

Туманность Конская голова
Слайд 25

Туманность Конская голова

Туманность Лагуна
Слайд 26

Туманность Лагуна

Трёхраздельная туманность
Слайд 27

Трёхраздельная туманность

Туманность IRAS 05437+2502
Слайд 28

Туманность IRAS 05437+2502

Звёздная пыль. Суммарная масса пыли всего 0,03 % полной массы галактики. Её полная светимость составляет 30 % от светимости звёзд и полностью определяет излучение галактики в инфракрасном диапазоне. Температура пыли 15÷25 К.
Слайд 29

Звёздная пыль

Суммарная масса пыли всего 0,03 % полной массы галактики. Её полная светимость составляет 30 % от светимости звёзд и полностью определяет излучение галактики в инфракрасном диапазоне. Температура пыли 15÷25 К.

Свет галактик представляет собой суммарный свет миллиардов звёзд и газа. Для изучения физических свойств галактик астрономы используют методы спектрального анализа. Спектральный анализ – физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанны
Слайд 30

Свет галактик представляет собой суммарный свет миллиардов звёзд и газа. Для изучения физических свойств галактик астрономы используют методы спектрального анализа. Спектральный анализ – физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектра.

Спектр Солнца

Красное смещение. Линии в спектрах всех известных галактик смещены к красному концу спектра. Пусть λо - длина волны спектральной линии, наблюдаемой в лаборатории, λ – длина волны спектральной линии в спектре галактики, Δλ=λ-λо - смещение спектральной линии. Оказалось, что отношение смещения спектрал
Слайд 31

Красное смещение

Линии в спектрах всех известных галактик смещены к красному концу спектра. Пусть λо - длина волны спектральной линии, наблюдаемой в лаборатории, λ – длина волны спектральной линии в спектре галактики, Δλ=λ-λо - смещение спектральной линии. Оказалось, что отношение смещения спектральной линии Δλ к λо одинаково для всех линий в спектре галактики.

Эффект Доплера. Смещение спектральных линий к красному концу спектра вызвано движением (удалением) излучающего объекта (галактики) со скоростью ? по направлению от наблюдателя. При Z « 1 ? = c·Z – скорость объекта (галактики), где c = 3·108 м/с – скорость света в вакууме.
Слайд 32

Эффект Доплера

Смещение спектральных линий к красному концу спектра вызвано движением (удалением) излучающего объекта (галактики) со скоростью ? по направлению от наблюдателя. При Z « 1 ? = c·Z – скорость объекта (галактики), где c = 3·108 м/с – скорость света в вакууме.

Закон Хаббла. По спектрам галактик установлено, что они «разбегаются» от нас со скоростью ?, пропорциональной расстоянию до галактики: ? = H·r, где H = 2,4·10-18 с-1 – постоянная Хаббла, r – расстояние до галактики (м).
Слайд 33

Закон Хаббла

По спектрам галактик установлено, что они «разбегаются» от нас со скоростью ?, пропорциональной расстоянию до галактики: ? = H·r, где H = 2,4·10-18 с-1 – постоянная Хаббла, r – расстояние до галактики (м).

Теория Большого взрыва. Вселенная возникла 13 млрд. лет назад из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в совре
Слайд 34

Теория Большого взрыва

Вселенная возникла 13 млрд. лет назад из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Критическое значение плотности вещества ƍкр от которого зависит характер его движения рассчитывается по формуле: где H = 2,4·10-18 с-1 – постоянная Хаббла, G = 6,67·10-11 (Н·м2)/кг2 – гравитационная постоянная. Подставив числовые значения, получим ƍкр =10-26 кг/м3. При ƍ ƍкр - сжатие Вселенной. Усре
Слайд 35

Критическое значение плотности вещества ƍкр от которого зависит характер его движения рассчитывается по формуле: где H = 2,4·10-18 с-1 – постоянная Хаббла, G = 6,67·10-11 (Н·м2)/кг2 – гравитационная постоянная. Подставив числовые значения, получим ƍкр =10-26 кг/м3. При ƍ ƍкр - сжатие Вселенной. Усреднённая плотность вещества во Вселенной ƍ = 3·10-28 кг/м3 .

Вывод. Представляя Вселенную как весь окружающий мир, мы сразу делаем её уникальной и единственной. И вместе с этим лишаем себя возможности описать её в терминах классической механики: из-за своей уникальности Вселенная ни с чем не может взаимодействовать, она — система систем, и поэтому в её отноше
Слайд 36

Вывод

Представляя Вселенную как весь окружающий мир, мы сразу делаем её уникальной и единственной. И вместе с этим лишаем себя возможности описать её в терминах классической механики: из-за своей уникальности Вселенная ни с чем не может взаимодействовать, она — система систем, и поэтому в её отношении теряют свой смысл такие понятия, как масса, форма, размер. Вместо этого приходится прибегать к языку термодинамики, употребляя такие понятия как плотность, давление, температура, химический состав.

Список литературы. Физика. 11 класс : учеб. для общеобразоват. Учреждений : базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чагурин; под ред. В.И. Николаева, Н.А. Парфентьевой. - 19-е изд. – М. : Просвещение, 2010. – 399 с., [4] л. ил. – (Классический курс). – ISBN 978-5-09-022777-3. ht
Слайд 37

Список литературы

Физика. 11 класс : учеб. для общеобразоват. Учреждений : базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чагурин; под ред. В.И. Николаева, Н.А. Парфентьевой. - 19-е изд. – М. : Просвещение, 2010. – 399 с., [4] л. ил. – (Классический курс). – ISBN 978-5-09-022777-3. http://ru.wikipedia.org http://diddlybop.ru http://www.adme.ru

Адрес нашего дома во Вселенной: Вселенная, Местная группа галактик, Галактика Млечный путь, Солнечная система, Планета Земля – третья планета от Солнца. Мы любим нашу планету и будем беречь её всегда!
Слайд 38

Адрес нашего дома во Вселенной: Вселенная, Местная группа галактик, Галактика Млечный путь, Солнечная система, Планета Земля – третья планета от Солнца. Мы любим нашу планету и будем беречь её всегда!

Список похожих презентаций

Строение и эволюция вселенной

Строение и эволюция вселенной

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает ...
Строение и эволюция вселенной

Строение и эволюция вселенной

Дать представление о структуре нашей Галактики Основные свойства ее Общее представление о скоплении звезд. Цели и задачи. Светлая полоса через все ...
Строение и эволюция вселенной

Строение и эволюция вселенной

Содержание. Введение Строение Галактики Новое представление о строении Вселенной Эволюция Вселенной Теории эволюции Вселенной Теория Эдвина Хаббла. ...
Эволюция вселенной

Эволюция вселенной

Что такое Вселенная? Вселенная — это совокупность пространства и времени, всех форм материи, физических законов и констант, которые управляют ими. ...
Происхождение и эволюция вселенной

Происхождение и эволюция вселенной

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает ...
Строение и эволюция звёзд

Строение и эволюция звёзд

Классификация нормальных звезд. Спектры большинства звезд эмпирически удалось расположить в виде последовательности, вдоль которой линии одних химических ...
Эволюция вселенной

Эволюция вселенной

Эволюция Вселенной и жизнь. Революционными вехами на пути развития астрономии были: обоснование идеи о шарообразности Земли, открытие Коперником гелиоцентрической ...
Строение вселенной

Строение вселенной

Все́світ — весь матеріальний світ, різноманітний за формами, що їх приймає матерія та енергія, включаючи усі галактики, зорі, планети та інші космічні ...
Эволюция вселенной

Эволюция вселенной

Введение. Основная часть. Глава 1 Начало начал Глава 2 Теория эволюции Вселенной. Глава 3 Эволюция материи. Глава 4 Современные исследования. III. ...
Строение и развитие вселенной

Строение и развитие вселенной

«Мы являемся свидетелями процессов определенного типа, поскольку процессы другого типа протекают без свидетелей» Зельманов А.Л. (1955). В Стокгольме ...
Чёрные дыры вселенной

Чёрные дыры вселенной

Состав Вселенной. Тёмная материя— форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной ...
Исследования вселенной - наса

Исследования вселенной - наса

О, сколько нам открытий чудных Готовят просвещенья дух, И опыт, сын ошибок трудных, И гений, парадоксов друг (А.С.Пушкин). Космос это мир в целом, ...
Древнее представление о вселенной

Древнее представление о вселенной

Правильное понимание наблюдаемых небесных явлений пришло не сразу. Представители лучших умов человечества трудились долго и упорно в поисках истины. ...
Есть ли разум во вселенной

Есть ли разум во вселенной

Какова наша Галактика: Солнечная система: Планеты Земной группы; Планеты-гиганты; Малые тела Солнечной системы Какие бывают Галактики Есть ли условия ...
Роль ученых нашей страны в изучении вселенной

Роль ученых нашей страны в изучении вселенной

Как для нашей планеты началась космическая эра? 4 октября 1957 года в 22 часа 28 минут 34 секунды (по московскому времени) с научно-исследовательского ...
Основные модели вселенной

Основные модели вселенной

Модель Милна: Модель расширяющейся вселенной без использования теории относительности, предложенная в 1948г. Эдвардом Милном. Это расширяющаяся, изотропная ...
Образование и эволюция звезд и планет

Образование и эволюция звезд и планет

Состав звезд. Большинство звезд состоит в основном из водорода (60…90%) и гелия (10…40%) и тяжелых элементов (0.1…3%). Такие звезды называются звездами ...
Николай коперник и его модель вселенной

Николай коперник и его модель вселенной

1400 лет господствовало учение Птолемея о Вселенной. Оно поддерживалось церковью и казалось неопровержимым. Но шло время… росли города,. развивались ...
Модель расширяющейся вселенной

Модель расширяющейся вселенной

Зарождение модели, 1916 г. Модель Вселенной А. Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. ...

Конспекты

Строение твердых тел. Кристаллические и аморфные тела

Строение твердых тел. Кристаллические и аморфные тела

Конспект урока. Строение твердых тел. Кристаллические и аморфные тела. Цель: сформировать знания о различии и строении твердых тел. Демонстрации: ...
Строение твёрдых, жидких и газообразных тел

Строение твёрдых, жидких и газообразных тел

Разработка урока физики в 7 классе по теме. . «Строение твёрдых, жидких и газообразных тел». Проблемно-мотивационный блок. Тема: Строение ...
Строение вещества. Молекулы

Строение вещества. Молекулы

План-конспект урока физики в 7 классе. по теме «Строение вещества. Молекулы». Автор:. Беркалиева Ирина Петровна,. учитель физики МОУ СОШ №2 ...
Строение вещества. Молекулы

Строение вещества. Молекулы

Конспект открытого урока по физике в 7-м классе. . Тема: "Строение вещества. Молекулы". . ЦЕЛИ:. Образовательна. я. :. Познакомить учащихся ...
Строение вещества

Строение вещества

Урок физики в 7 классе. Строение вещества. Цель урока:. . Сформировать у обучающихся детальное представление о строении вещества. Ход урока. ...
Строение вещества. Молекулы

Строение вещества. Молекулы

6. . . План-конспект урока физики в 7 классе. Тема: Строение вещества. Молекулы. Образовательные:. вызвать объективную необходимость изучения ...
Строение атомов

Строение атомов

МБОУ СОШ №3 г. Навашино. Нижегородская область. УРОК ПО ФИЗИКЕ. . ТЕМА «Строение атомов». (8 класс, 13-14 лет). ...
Строение вещества

Строение вещества

Урок-исследование. Изучение нового материала. Строение вещества. 7-й класс. . Тип урока: комбинированный урок. Цели урока: сформировать представление ...
Строение атома. Опыт Резерфорда

Строение атома. Опыт Резерфорда

. Муниципальное общеобразовательное учреждение. Заозерская. средняя общеобразовательная школа. Угличского района Ярославской области. ...
Строение атомного ядра

Строение атомного ядра

Урок физики в 9 классе. Тема: Строение атомного ядра. Цель урока:. познакомить учащихся с протонно-нейтронной моделью ядра, научить обобщать и ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:2 августа 2018
Категория:Астрономия
Содержит:38 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации